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0. Preface

The ICON (ICOsahedral Nonhydrostatic) modelling framework (Zängl et al., 2015) is a
joint project between the German Weather Service (DWD) and the Max-Planck-Institute
for Meteorology for developing a unified next-generation global numerical weather predic-
tion (NWP) and climate modelling system.

The main goals formulated in the initial phase of the collaboration were

• better conservation properties than in the existing global models, with the obligatory
requirement of exact local mass conservation and mass-consistent transport,

• better scalability on future massively parallel high-performance computing architec-
tures, and

• the availability of some means of static mesh refinement. ICON is capable of mixing
one-way nested and two-way nested grids within one model application, combined
with an option for vertical nesting. This allows the global grid to extend into the
mesosphere (which greatly facilitates the assimilation of satellite data) whereas the
nested domains extend only into the lower stratosphere in order to save computing
time.

The ICON modelling framework became operational in DWD’s forecast system in Jan-
uary 2015. During the first six months only global simulations were executed with a hor-
izontal resolution of 13 km and 90 vertical levels. Starting from July 21st, 2015, model
simulations have been complemented by a nesting region over Europe.

The model source code has been made available for scientific use under an institutional
license since 2015.

0.1. How This Document Is Organized

Not all topics in this manuscript are covered during the workshop. Therefore, the
manuscript can be used as a textbook, similar to a user manual for the ICON model.
Readers are assumed to have a basic knowledge of the design and usage of numerical
weather prediction models.

Even though the chapters in this textbook are largely independent, they should preferably
not be treated in an arbitrary order.

• For getting started with the ICON model: read Chapters 1 – 4.

• New users who are interested in the regional model should read Chapter 5 in addition.

ICON Model Tutorial CHAPTER 0. PREFACE



2 0.2 How to Obtain a Copy of the ICON Model Code

• More advanced topics are covered by Chapters 6 – 9.

To some extent this document can also be used as a reference manual. To this end, we
refer to the index of namelist parameters on page 151.

Each of the chapters concludes with a number of exercises revisiting the topics from that
part. Paragraphs describing common pitfalls and containing details for advanced users are
marked by the symbol .

0.2. How to Obtain a Copy of the ICON Model Code

The ICON model is distributed under an institutional license1. To obtain a grant of
license that must be signed and returned to the DWD, please contact icon@dwd.de.

For data requests with respect to DWD operational data products please contact
datenservice@dwd.de. Access to the grid generator web service (see Section 2.2.2)
requires a user account. To this end, please contact Klima.Vertrieb@dwd.de.

0.3. Further Documentation

The ICON model is accompanied by various other manuals and documentation.

For model users who intend to process data products of DWD’s operational runs, the
DWD database documentation may be a valuable resource. It can be found (in English
language) on the DWD web site

www.dwd.de/SharedDocs/downloads/DE/

modelldokumentationen/nwv/icon/icon dbbeschr aktuell.pdf.

The pre- and post-processing tools of the DWD ICON Tools collection are described in
more detail in the DWD ICON Tools manual Prill (2014).

Up to now there is no comprehensive scientific documentation available. In this respect
we refer to the publication Zängl et al. (2015) and the references cited therein.

1An individual licensing procedure has not yet been released by February 2017.
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1. Installation of the ICON Model Package

The purpose of this tutorial is to give you some practical experience in installing and run-
ning the ICON model package. Exercises are carried out on the supercomputers at DWD
but the principal steps of the installation can directly be transferred to other systems.

1.1. The ICON Model Package

The source code for the ICON model package consists of the following three components:

• The ICOsahedral Nonhydrostatic model (ICON)
The ICON code that is used for this tutorial has been derived from the development
branch (state February 2017 ). It also contains the ocean model developed at MPI-M
which is, however, not covered by this tutorial.

• ICON-ART for aerosols and reactive trace gases
The ART module, where ART stands for Aerosols and Reactive Trace gases, is an
extension of the ICON model to enable the simulation of gases, aerosol particles
and related feedback processes in the atmosphere. The module is provided by the
Karlsruhe Institute of Technology (KIT).

• DWD ICON Tools
The ICON Tools are a set of command-line tools for remapping, extracting and
querying ICON data files. They are based on a common library and written in
Fortran 90/95 and Fortran 2003.

1.1.1. Directory Layout

Figure 1.1 shows a brief description of the directory structure of the ICON model and of
the directories containing the test case data under the root tree.

The ICON model code is located in the directory icon-dev. The most important subdi-
rectories are described in the following:

Subdirectory build

Within the build directory, a subdirectory with the name of your computer archi-
tecture is created during compilation. Within this subdirectory, a bin subdirectory
containing the ICON binary icon and several other subdirectories containing the
compiled module files are created.

ICON Model Tutorial CHAPTER 1. INSTALLATION OF THE ICON MODEL PACKAGE
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icon tutorial

documentation

reference

test cases

case1

case2

case3

case4

icon-dev

src

art

support

config

include

lapack

blas

externals

build

dwd icon tools

e. g. tutorial hand-outs

solutions to exercises, example output

test case 1: idealized experiment (see Ch. 3)

test case 2: real-data experiment (see Ch. 4)

test case 3: limited area experiment (see Ch. 5)

test case 4: further features of ICON (see Ch. 6)
– not covered during the course

Fortran sources

ART code (see Ch. 8)

C99 support library and utility routines

platform configuration, see Section 1.2.1.

C library interface

numerical utility library

numerical utility library

external submodules (calendar etc.)

build directory with sources and binary

utilities, e. g. for remapping data

Figure 1.1.: Directory structure of the ICON model and of the directories containing the
test case data under the root tree.

Subdirectory config

Inside the config directory, different machine-dependent configurations are stored
in configuration script files (see Section 1.2.1).

Subdirectory src

Within the src directory, the source code of ICON including the main program and
ICON modules can be found. The modules are organized in several subdirectories:

The main program icon.f90 can be found inside the subdirectory src/drivers. Ad-
ditionally, this directory contains the modules for a hydrostatic and a nonhydrostatic
setup.

The configuration of ICON run-time settings is performed within the modules inside
src/configure_model and src/namelists. Modules regarding the configuration of
idealized test cases can be found inside src/testcases.

CHAPTER 1. INSTALLATION OF THE ICON MODEL PACKAGE ICON Model Tutorial
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The dynamics of ICON are inside src/atm_dyn_iconam and the physical parame-
terizations inside src/atm_phy_nwp. Surface parameterizations can be found inside
src/lnd_phy_nwp.

Shared infrastructure modules for 3D and 4D variables are located within
src/shared. Routines that are primarily related to horizontal grids and 2D fields
(e.g. external parameters) are stored within src/shr_horizontal.

Modules handling the parallelization can be found in src/parallel_infrastructure.

Input and output modules are stored in src/io.

The ICON code comes with its own LAPACK and BLAS sources. For performance reasons,
these libraries may be replaced by machine-dependent optimizations. However, please note
that LAPACK and BLAS routines are not actively used by the nonhydrostatic model.

1.1.2. Libraries Needed for Data Input and Output

Especially for I/O tasks, the ICON model package requires external libraries. Two data
formats are implemented in the package to read and write data from or to disk: GRIB and
NetCDF.

• GRIB (GRIdded Binary) is a standard defined by the World Meteorological Orga-
nization (WMO) for the exchange of processed data in the form of grid point values
expressed in binary form. GRIB coded data consists of a continuous bit-stream made
of a sequence of octets (1 octet = 8 bits). Please note that the ICON model does
support only the GRIB2 version of the standard.

• NetCDF (Network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. NetCDF files contain the complete information about the
dependent variables, the history, and the fields themselves. The NetCDF file format
is also used for the definition of the computational mesh (grid topology).
For more information on NetCDF see http://www.unidata.ucar.edu.

To work with the formats described above the following libraries are implemented in the
ICON model package. For this training course, the paths to access these libraries on the
used computer system are already specified in the Makefile.

The Climate Data Interfaces (CDI) – support/cdilib.c

This library has been developed and implemented by the Max-Planck-Institute for Mete-
orology in Hamburg. It provides a C and Fortran interface to access climate and NWP
model data. Among others, supported data formats are GRIB1/2 and NetCDF. A con-
densed copy of the CDI is distributed together with the ICON model package. Note that
the CDI are also used by the DWD ICON Tools.
For more information see https://code.zmaw.de/projects/cdi.

ICON Model Tutorial CHAPTER 1. INSTALLATION OF THE ICON MODEL PACKAGE
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6 1.1 The ICON Model Package

The ECMWF GRIB-API – libgrib api.a, libgrib api f90.a

The European Centre for Medium-Range Weather Forecasts (ECMWF) has developed an
application programmers interface (API) to pack and unpack GRIB1 as well as GRIB2
formatted data. For setting meta-data, the GRIB-API uses the so-called key/value ap-
proach. Indirect use of this GRIB-API library in the ICON model is implemented through
the CDI.

In addition to the interface routines, there are some command-line tools to provide an
easy way to check and manipulate GRIB data from the shell. Amongst them, the most
important ones are grib ls and grib dump for listing the contents of a grib file, and
grib set for (re)-setting specific key/value pairs.

For more information on GRIB-API we refer to the ECMWF web page:

https://software.ecmwf.int/wiki/display/GRIB/Home

Installation: The source code for the GRIB-API can be downloaded from the
ECMWF web page.

Please refer to the README for installing the GRIB-API libraries, which is done with
a configure script. Check the following settings:

• The GRIB-API can make use of optional JPEG packing of the GRIB records,
but this requires the installation of additional libraries. Since the ICON model
does not apply this packing algorithm, the support for JPEG can be disabled
during the configure step with the option --disable-jpeg.

• To use statically linked libraries and binaries you should set the configure
option --enable-shared=no.

After the configuration has finished, the GRIB-API library can be built with make

and then make install.

GRIB Definition Files

An installation of the GRIB-API always consists of two parts: First, there is the binary
compiled library itself with its functions for accessing GRIB files. But, second, there is
the definitions directory which contains plain-text descriptions of meta data. For example,
these definition files contain information about the variable short name and the corre-
sponding GRIB code triplet.

The short name, e.g., “t” for temperature, is not stored in data files, in contrast to the
corresponding GRIB triplet. The definition file therefore constitutes an essential link: If
the definition files on two institutes do not match it is possible that the same data file
shows the record “OMEGA” on one site (our DWD system), while the same GRIB record
bears the short name “w” on the other site (both have indicatorOfParameter=39).

In theory, this situation could be solved by changing all field names in the ICON name
list setup, where possible. However, it is likely that further related errors may follow in

CHAPTER 1. INSTALLATION OF THE ICON MODEL PACKAGE ICON Model Tutorial
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1.2 Configuring and Compiling the Model Code 7

the ICON model when this searches for a specific variable name. In this case you might
need to change the definition files after all.

The DWD definition files for the GRIB-API can be obtained via Github

https://github.com/erget/grib-api.definitions.edzw

The new directory needs to be communicated to the GRIB-API by setting the
GRIB DEFINITION PATH environment variable (preceding the default definition files path).

The NetCDF library – libnetcdf.a

A special library, the NetCDF library, is necessary to write and read data using the
NetCDF format. This library also contains tools for manipulating and visualizing the
data (ncdump utility, see Section 7.1.1).

If the library is not yet installed on your system, you can get the source code and docu-
mentation from

http://www.unidata.ucar.edu/software/netcdf/index.html

This includes a description how to install the library on different platforms. Please make
sure that the F90 package is also installed, since the model reads and writes grid data
through the F90 NetCDF functions. While the classic NetCDF format could not deal with
files larger than 2 GiB the new NetCDF-4/HDF5 format permits storing files as large as
the underlying file system supports. However, NetCDF-4/HDF5 files are unreadable to
the NetCDF library before version 4.0.

1.2. Configuring and Compiling the Model Code

This section explains the configuration process of the ICON model. It is assumed that the
libraries and programs discussed in Section 1.1.2 are present on your computer system.
For convenience, the compiler version and the GRIB-API version are documented in the
log output of each model run.

1.2.1. Computer Platforms

For a small number of HPC platforms settings are provided with the code, for example

Cray XC 40 cluster (“xce.dwd.de“)
432 compute nodes Intel Haswell (2 CPUs/node, 12 cores/CPU, 62 GiB memory)
544 compute nodes Intel Broadwell (2 CPUs/node, 18 cores/CPU)

MPI: Cray MPICH 7.0.1

NetCDF: Version 4.3.2
Compiler: Cray Fortran v8.4.1
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Fortran Compiler Minimum Version

GNU gcc v5.1.0

Cray cftn v8.4.1

Intel ifort v16.0.0

NAG nagfor v6.0.10641

Table 1.1.: Minimum requirements for Fortran compilers for building the ICON code (state
February 2017 )

This compiler setup is defined in the configuration file config/mh-linux.

HLRE-3 cluster “Mistral“ (DKRZ Hamburg)
1500 compute nodes Intel Haswell (2 CPUs/node, 12 cores/CPU)
1500 compute nodes Intel Broadwell (2 CPUs/node, 18 cores/CPU)

MPI: Intel MPI library 2017.0.098

NetCDF: Version 4.4.2
Compiler: GNU compiler gcc 6.2.0

This compiler setup is defined in config/mh-linux.

Other architecture-dependent configuration files may be added to the directory
icon/config. Be warned that you need some knowledge about Unix / Linux, compilers
and Makefiles to make the necessary adjustments w.r.t. the computing environment.

Minimum requirements for various Fortran compilers are provided in Table 1.1.

The ICON model supports different modes of parallel execution, see Section 4.4 for details:

• In the first place, ICON has been implemented for distributed memory parallel com-
puters using the Message Passing Interface (MPI). MPI is a library specification,
proposed as a standard by a broadly based committee of vendors, implementors,
and users, see http://www.mcs.anl.gov/research/projects/mpi.

• Moreover, on multi-core platforms, the ICON model can run in parallel using shared-
memory parallelism with OpenMP. The OpenMP API is a portable, scalable tech-
nique that gives shared-memory parallel programmers a simple and flexible inter-
face for developing parallel applications on platforms ranging from embedded sys-
tems and accelerator devices to multicore systems and shared-memory systems, see
http://openmp.org.

Finally, note that although ICON has been implemented for distributed memory parallel
computers using the Message Passing Interface (MPI), the model can also be installed on
sequential computers, where MPI and/or OpenMP are not available.

1.2.2. Configuring and Compiling

A configure file is provided that takes over the main work of generating the compilation
setup. This autoconf configuration is used to analyze the computer architecture (hardware

1This is one possible compiler version rather than the minimum requirement. Older versions might work
as well.
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and software) and sets user specified preferences, e.g. the compiler. These preferences are
read from config/mh-<OS>, where <OS> is the identified operating system.

To configure the source code, please log into the Cray XC 40 login node xce and change
into the subdirectory icon-dev. Then type:

./configure --with-fortran=compiler

where compiler is {gcc,nag,intel,pgi,cray}. The default is gcc. Here, for the DWD
platform, please choose the option --with-fortran=cray.

With the Unix command make the programs are compiled and all object files are linked
to create the binaries. On most machines you can also compile the routines in parallel
by using the GNU-make with the command gmake -j np, where np gives the number of
processors to use (np typically about 8).

During the compilation process, a subdirectory with the name of your computer archi-
tecture is created within the build directory. In this subdirectory, a bin subdirectory
containing the binary icon and several further subdirectories containing the compiled
module files are created.

If you wish to re-configure ICON it is advisable first to clean the old setup by giving:

make distclean

Some more details on configure options can be found in the help of the configure command:

./configure --help

Note for advanced users: Only the Cray XC 40 platform does not require an
explicit “--with-openmp” option for hybrid parallel binaries. If one uses, e.g., the
Intel Fortran compiler, then this option is explicitly needed in the configure process.

1.3. The DWD ICON Tools

1.3.1. General Overview

The DWD ICON Tools provide a number of utilities for the pre- and post-processing of
ICON model runs. All of these tools can run in parallel on multi-core systems (OpenMP)
and some offer an MPI-parallel execution mode in addition. We give a short overview over
several tools in the following and refer to the documentation (Prill (2014)) for details.
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ICONREMAP – Used in Sections 2.3.2, 2.3.4

The iconremap utility is especially important for pre-processing the initial data for the
basic test setups in this manuscript. iconremap (ICOsahedral N onhydrostatic model
REMAPping) is a utility program for horizontally interpolating ICON data onto regu-
lar grids and vice versa. Besides, it offers the possibility to interpolate between triangular
grids of different resolution.

The iconremap tool reads and writes data files in GRIB2 or NetCDF file format. For
triangular grids an additional grid file in NetCDF format must be provided.

Several interpolation algorithms are available: Nearest-neighbor remapping, radial basis
function (RBF) approximation of scalar fields, area-weighted formula for scalar fields, RBF
interpolation for wind fields from cell-centred zonal, meridional wind components u, v to
normal and tangential wind components at edge midpoints of ICON triangular grids (and
reverse), and barycentric interpolation.

Note that iconremap only performs a horizontal remapping, while the vertical
interpolation onto the model levels of ICON is handled independently at startup.

ICONGPI

icongpi (ICOsahedral N onhydrostatic model Grid Point I nformation) is a utility pro-
gram for searching / accessing individual grid points of an ICON grid. It can be used to
determine cells in a triangular grid corresponding to a given geographical position and to
determine the geographical position for a given cell index.

ICONSUB – Used in Section 2.3.4

The iconsub tool (ICOsahedral N onhydrostatic model SUBgrid extraction) allows “cut-
ting” sub-areas out of ICON data sets.

After reading a data set on an unstructured ICON grid in GRIB2 or NetCDF file format,
the tool comprises the following functionality: It may ‘cut out” a subset, specified by two
corners and a rotation pole (similar to the COSMO model). Alternatively, a boundary
region of a local ICON grid, specified by parent-child relations, may be extracted. Finally,
the extracted data is stored in GRIB2- or NetCDF file format.

Multiple sub-areas can be extracted in a single run of iconsub.

ICONGRIDGEN – Used in Section 2.1.2

The icongridgen tool is a simple grid generator. An existing global or local grid file is
taken as input and parts of this input grid (or the whole grid) are refined via bisection.

No storage of global grids is necessary and the tool also provides an HTML plot of the
grid.
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1.3.2. Configuring and Compiling the DWD ICON Tools

To compile the DWD ICON Tools binaries, log into the Cray XC 40 login node xce and
change into the subdirectory icontools by typing

cd dwd_icon_tools/icontools/

You get a list of available compile targets by typing make. The following output is exem-
plary and may differ from your current version:

------------------------------------------------------------------------------------

DWD ICONTOOLS

A set of command-line tools for remapping, extracting and querying

ICON data files.

Available Makefile targets:

target name platform parallelization compiler

----------- -------- --------------- --------

local local DWD workstation, OpenMP gfortran

local_mpi local DWD workstation, OpenMP + MPI

ibmp7_mpi IBM Power 7, OpenMP + MPI XLF

cray_mpi Cray XE 6 / Cray XC 40, OpenMP + MPI Cray FTN

nag_mpi thunder OpenMP + MPI NAGFOR

nag thunder OpenMP NAGFOR

lce_intel lce OpenMP Intel

lce_intel_dbg lce with debugging flags OpenMP Intel

lce_intel_mpi lce OpenMP + MPI Intel

lce_intel_mpi_dbg lce with debugging flags OpenMP + MPI Intel

lce_gfortran_mpi_dbg lce with debugging flags OpenMP + MPI gfortran

mistral_intel Mistral DKRZ OpenMP + MPI Intel

clean remove all object files, libraries and executables

------------------------------------------------------------------------------------

For example, the binary for the Cray XC 40 can be created by typing

make cray_mpi

ICON Tools Libraries: The DWD ICON Tools are divided into several independent
libraries which can be linked against user applications. The purpose of this hierar-
chy of sub-libraries is to access the high-level API (iconremap, iconsub, icongpi,
icongridgen, icondelaunay) which are part of the overarching libicontools.a

sub-library, or alternatively call the low-level API (interpolation, load grid, query
point etc.) directly. For the latter case, it is not necessary to read namelists and
data via the ICON Tools, since all the necessary data is provided via subroutine
interfaces.
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The DWD ICON utilities use the GRIB-API for reading data in GRIB2 format.
The GRIB-API is indirectly accessed by the Climate Data Interface (CDI).

1.4. Exercise

For practical work during these exercises, you need information about the use of the
computer systems and from where you can access the necessary files and data.

Please take a look at Appendix A to get information on how to use DWD’s supercomputer
and run test jobs.

EX 1.1

Log into the Cray XC 40 login node “xce” and install the ICON model in the $WORK

directory of your Cray XC 40 user account. For that you have to do the following:

• The necessary files for the ICON tutorial can be found in the subdirectory

/e/uwork/trng024/packages

Copy the tar-file icon tutorial.tar.gz into your $WORK directory.

• Change into your $WORK directory and extract the compressed tar file to yield
the directory structure depicted in Figure 1.1 containing the ICON sources
and test data.

• Follow the instructions in Section 1.2.2 to configure and compile the ICON
model on the Cray XC 40 platform.

Install also the DWD ICON Tools:

• Change into the subdirectory dwd icon tools and build the DWD ICON
Tools according to Section 1.3.
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2. Necessary Input Data

Besides the source code of the ICON package and the libraries, several data files are
needed to perform runs of the ICON Model. There are four categories of necessary data:
Horizontal grid files, external parameters, and data describing the initial state (DWD
analysis or ECMWF IFS data). Finally, running forecasts with a limited area model in
addition requires accurate boundary conditions sampled at regular time intervals.

2.1. Horizontal Grids

2.1.1. ICON Grid Files

In order to run ICON, it is necessary to load the horizontal grid information as an input
parameter. This information is stored within so-called grid files. For an ICON run, at least
one global grid file is required. For model runs with nested grids, additional files of the
nested domains are necessary. Optionally, a reduced radiation grid for the global domain
may be used.

The following nomenclature has been established: In general, by RnBk we denote a grid
that originates from an icosahedron whose edges have been initially divided into n parts,
followed by k subsequent edge bisections. See Figure 2.1 for an illustration of the grid
creation process. The total number of cells in a global ICON grid RnBk is given by
ncells := 20n2 4k. The effective mesh size can be estimated as

∆x =
√
Searth/ncells ≈ 5050/(n 2k) [km] , (2.1)

where Searth denotes the earth’s surface. Note that by construction, each vertex of a global
grid is adjacent to exactly 6 triangular cells, with the exception of the original vertices of
the icosahedron, the pentagon points, which are adjacent to only 5 cells.

The unstructured triangular ICON grid resulting from the grid generation process is rep-
resented in NetCDF format. This file stores coordinates and topological index relations
between cells, edges and vertices.

The most important data entries of the main grid file are

• cell (INTEGER dimension)
number of (triangular) cells

• vertex (INTEGER dimension)
number of triangle vertices
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Figure 2.1.: Illustration of the grid construction procedure. The original spherical icosahe-
dron is shown in red, denoted as R1 B00 following the nomenclature described
in the text. In this example, the initial division (n=2; black dotted), followed
by one subsequent edge bisection (k=1) yields an R2 B01 grid (solid lines).

• edge (INTEGER dimension)
number of triangle edges

• clon, clat (double array, dimension: #triangles, given in radians)
longitude/latitude of the midpoints of triangle circumcenters

• vlon, vlat (double array, dimension: #triangle vertices, given in radians)
longitude/latitude of the triangle vertices

• elon, elat (double array, dimension: #triangle edges, given in radians)
longitude/latitude of the edge midpoints

• cell area (double array, dimension: #triangles)
triangle areas

• vertex of cell (INTEGER array, dimensions: [3, #triangles])
The indices vertex of cell(:,i) denote the vertices that belong to the triangle i.
The vertex of cell index array is ordered counter-clockwise for each cell.

• edge of cell (INTEGER array, dimensions: [2, #triangles])
The indices edge of cell(:,i) denote the edges that belong to the triangle i.

• clon/clat vertices (double array, dimensions: [#triangles, 3], given in radians)
clon/clat vertices(i,:) contains the longitudes/latitudes of the vertices that be-
long to the triangle i.

• zonal/meridional normal primal edge: components of the normal vector at the
triangle edge midpoints.
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Figure 2.2.: Illustration of the parent-child relationship in refined grids. Left: Triangle
subdivision and local cell indices. Right: The grids fulfil the ICON requirement
of a right-handed coordinate system [~et, ~en, ~ew].

Refinement Information

Additional topological information is required for ICON’s refined nests: Each “parent”
triangle is split into four “child” cells. In the grid file only child-to-parent relations are
stored while the parent-to-child relations are computed in the model setup. The local
numbering of the four child cells (see Fig. 2.2) is also computed in the model setup.

The refinement information may be provided in a separate file. This optional grid con-
nectivity file (suffix -grfinfo.nc) acts as a fallback at model startup if the expected
information is not found in the main grid file.

Finally, note that the data points on the triangular grid are the cell circumcenters. There-
fore the global grid data points are closely located to nest data sites, but they do not
coincide exactly.

2.1.2. Grid Generator

Introductory Remarks

There are (at least) three grid generation tools available for the ICON model: The ICON
model itself is shipped together with a standalone tool grid command. The executable file
of the grid generator grid command is created automatically during the build process and
is located in the same subdirectory as the model binary. We refer to the documentation
icon-dev/doc/Namelist overview.pdf for details. A different grid generation tool has
been developed at the Max-Planck-Institute for Meteorology by L. Linardakis. Finally,
another grid generator is contained in the DWD ICON Tools.

In this section we will discuss the grid generator that is contained in the DWD ICON
Tools, because this utility also acts as the backend for the publicly available web tool.
The latter is shortly described in Section 2.2.2. It is important to note, however, that
this grid generator is not capable of generating grids with unusual root subdivisions or
non-spherical geometries like torus grids.
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Grid Generation Example

The DWD ICON Tools utility icongridgen is mainly controlled using a Fortran namelist.

The command-line option that is used to provide the name of this file and other available
settings are summarized via typing

icongridgen --help

The Fortran namelist gridgen nml contains the filename of the parent grid which is to be
refined and the grid specification is set for each child domain independently. For example
(COSMO-EU nest) the settings are

dom(1)%region_type = 3

dom(1)%lrotate = .true.

dom(1)%hwidth_lon = 20.75

dom(1)%hwidth_lat = 20.50

dom(1)%center_lon = 2.75

dom(1)%center_lat = 0.50

dom(1)%pole_lon = -170.00

dom(1)%pole_lat = 40.00

For a complete list of available namelist parameters we refer to the documentation (Prill
(2014)).

The icongridgen grid generator checks for overlap with concurrent refinement regions,
i.e. no cells are refined which are neighbors or neighbors-of-neighbors (more precisely:
vertex-neighbor cells) of parent cells of another grid nest on the same refinement level.
Grid cells which violate this distance rule are “cut out” from the refinement region. Thus,
there is at least one triangle between concurrent regions.

Minimum distance between child nest boundary and parent boundary: As a second
constraint, in the case that the parent grid itself is a bounded regional grid, no cells
can be refined that are part of the indexing region (of width bdy indexing depth)
in the vicinity of the parent grid’s boundary.

Settings for ICON-LAM

When the grid generator icongridgen is targeted at a limited area setup (for ICON-LAM),
two important namelist settings must be considered:

• Identifying the grid boundary zone. In Section 2.3.4 we will describe how to drive
the ICON limited area model. Creating the appropriate boundary data makes the
identification of a sufficiently large boundary zone necessary.

This indexing is enabled through the following namelist setting in gridgen nml:
bdy indexing depth = 14.

This means that 14 cell rows starting from the nest boundary are marked and can
be identified in the ICON-LAM setup, which is described in Section 2.3.4.
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Figure 2.3.: Screenshots of the ICON download server hosted by the ZMAW in Hamburg.

• Generation of a coarse-resolution radiation grid (see Section 6.2 for details).

The creation of a separate (local) parent grid with suffix *.parent.nc is enabled
through the following namelist setting in gridgen nml:

dom(:)%lwrite parent = .TRUE.

Note that a grid whose child-to-parent indices are occupied by such a coarse grid
can no longer be used in a standard feedback-loop together with a global grid.

2.1.3. Download of Predefined Grids

For fixed domain sizes and resolutions a list of grid files has been pre-built for the ICON
model together with the corresponding reduced radiation grids and the external parame-
ters.

The contents of the primary storage directory are regularly mirrored to a public web site
for download, see Figure 2.3 for a screenshot of the ICON grid file server. The download
server can be accessed via

http://icon-downloads.zmaw.de

The pre-defined grids are identified by a centre number, a subcentre number and a num-
berOfGridUsed, the latter being simply an integer number, increased by one with every
new grid that is registered in the download list. Also contained in the download list is
a tree-like illustration which provides information on parent-child relationships between
global and local grids, and global and radiation grids, respectively.

Note that the grid information of some of the older grids (no. 23 – 40) is split over two
files: The users need to download the main grid file itself and a grid connectivity file (suffix
-grfinfo.nc).
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2.1.4. Which Grid File is Related to My Simulation Data?

ICON data files do not (completely) contain the description of the underlying grid. This
is an important consequence of the fact that ICON uses unstructured, pre-generated com-
putational meshes. Therefore, given a particular data file, one question naturally arises:
Which grid file is related to my simulation data?

The answer to this question can be obtained with the help of two meta-data items which
are part of every ICON data and grid file:

• numberOfGridUsed

This is simply an integer number, as explained in the previous section. The
numberOfGridUsed helps to identify the grid file in the public download list. If the
numberOfGridUsed differs between two given data files, then these are not based on
the same grid file.

• uuidOfHGrid

This acronym stands for universally unique identifier and corresponds to a binary
data tag with a length of 128 bits. The UUID can be viewed as a fingerprint of
the underlying grid. Even though this is usually displayed as a hexadecimal num-
ber string, the UUID indentifier is not human-readable. Nevertheless, two different
UUIDs can be tested for equality or inequality.

The meta-data values for numberOfGridUsed and uuidOfHGrid offer a way to track the
underlying grid file through all transformations in the scientific workflow, for example in

• external parameter files

• analysis data for forecast input

• data files containing the diagnostic output

• checkpointing files (defensive I/O).

2.2. External Data Files

2.2.1. ExtPar Products

External parameters are used to describe the properties of the earth’s surface. These data
include the topography, the land-sea-mask, and several parameters which are needed to
specify the dominant land use of a grid box like the soil type or the plant cover fraction.

The ExtPar software (ExtPar – External Parameters for numerical weather prediction and
climate application) is able to generate external parameters for the different models GME,
COSMO, HRM and ICON. Experienced users can run ExtPar on UNIX or Linux systems
to transform raw data from various sources into and domain-specific data files. For a more
detailed overview of ExtPar, the reader is referred to the User and Implementation Guide
of ExtPar. The ExtPar preprocessor is a COSMO software and not part of the ICON
training course release.

CHAPTER 2. NECESSARY INPUT DATA ICON Model Tutorial



2.2 External Data Files 19

Similar as for the grid files, for fixed domain sizes and resolutions some external parameter
files for the ICON Model are available for download. For the NWP release these data are
provided in the NetCDF file format and GRIB2.

Topography information: Please note the following remark:

The topography contained in the ExtPar data files is not identical to the topography
data which is eventually used by the model. This is because at start-up, after
reading the ExtPar data, the topography field is optionally filtered by a smoothing
operator. Therefore, for post-processing purposes it is necessary to specify and use
the topography height topography c (GRIB2 short name HSURF) from the model
output (cf. Section 4.3 and Appendix C).

Additional information for surface tiles: ExtPar data is available with and without
additional information for surface tiles.

Tiles are a means to adequately represent the sub-grid surface heterogeneity in
each surface grid element. Following the basic idea of Avissar and Pielke (1989),
patches of the same surface type occurring within a grid element are regrouped into
homogeneous classes (tiles). The surface energy balance and soil physics are then
computed separately for each tile, using parameters characteristic for each surface
type (z0, leaf area index LAI, albedo,. . . ). The contributions from the different tiles
are areally weighted to finally provide the cell-averaged atmospheric forcing.

Extpar data files suitable for the tile approach are indicated by the suffix tiles.
They are also applicable when running the model without tiles. Extpar files without
the suffix tiles, however, must only be used when running the model without tiles
(lnd nml/ntiles = 1).

The data files do not differ in the number of fields, but only in the way some
fields are defined near coastal regions. Without the tiles suffix, various surface
parameters (e.g. SOILTYP, NDVI MAX) are only defined at so called dominant land
points, i.e. at grid elements where the land fraction exceeds 50%. With the tiles

suffix, however, these parameters are additionally defined at cells where the land
fraction is below 50%. By this, we allow for mixed water-land points. The same
holds for the lake depth (depth lk) which is required by the lake parameterization.
In files without the tiles suffix, it is only defined at dominant lake points.

In addition to the ExtPar products, input fields for radiation are loaded into the ICON
model. These constants fields are distributed together with the model code in the subdi-
rectory icon-dev/data.

2.2.2. Web-based Generation of Grids and External Parameters

A web service has been made available to help users with the generation of custom grid
files. After entering grid coordinates through an online form, this web service creates a
corresponding ICON grid file together with the necessary external parameter file.
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Figure 2.4.: Web browser screenshot of the web-based ICON grid generator tool. Left: Web
form. Right: HTML visualization of the resulting grid based on Google Maps.

A user account is required for access: Please contact Klima.Vertrieb@dwd.de to this end.
Then, visit the web page of the pamore data service

https://webservice.dwd.de/cgi-bin/spp1167/webservice.cgi

and, after logging into the web site, choose External Parameters for ICON and COSMO
→ External Parameters and Grid Files for ICON.

The web form is more or less self-explanatory. The settings reflect the namelist parameters
of the icongridgen grid generator tool that runs as the first stage of the web service. These
are explained in Section 2.1.2 of this tutorial. The second stage, the ExtPar tool, does not
require further settings (with the exception of the surface tiles setting, see below).

The tool is capable of generating multiple grid files at once. Please note that the web-
based grid generation submits a batch job to DWD’s HPC system and takes
some time for processing! Finally all results (and log files) are packed together into
a ∗.tar.gz archive and the user is informed via e-mail about its FTP download site.
Additionally, a web browser visualization of the grids based on Google Maps is provided,
see Fig. 2.4.

Surface tiles: The web-based generator can produce ExtPar data with and with-
out additional information for surface tiles (see the explanation on p. 19). The –
recommended – default has the tile data enabled. This setting can be changed by
disabling the corresponding checkbox in the HTML form.

Minimum version required: Grid files that have been generated by the icongridgen
tool contain only child-to-parent relations while the parent-to-child relations are
computed in the model setup. Therefore these grids must be used together with
ICON versions newer than ∼ September 2016.
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2.3. Initial and Boundary Conditions

Global numerical weather prediction (NWP) is an initial value problem. The ability to
make a skillful forecast heavily depends on the accuracy with which the present atmo-
spheric (and surface/soil) state is known. Running forecasts with a limited area model in
addition requires accurate boundary conditions sampled at regular time intervals.

Initial conditions are usually generated by a process called data assimilation1. Data as-
similation combines irregularly distributed (in space and time) observations with a short
term forecast of a general circulation model (e.g. ICON) to provide a ’best estimate’ of
the current atmospheric state. Such analysis products are provided by several global NWP
centers. In the following we will present and discuss the data sets that can be used to drive
the ICON model.

2.3.1. DWD Analysis Data

The most straightforward way to initialize ICON is to make use of DWD’s analysis prod-
ucts, which are generated operationally every 3 hours. They are available in GRIB2 format
on the native ICON grid. The analysis products are generated by a hybrid system named
EnVar which combines variational and ensemble methods. See Chapter 9 for more infor-
mation on DWD’s data assimilation system.

When started in this DWD initialization mode, the model loads two files: a first guess and
an analysis file. The term first guess denotes a short-range forecast of the NWP model at
hand, whereas the term analysis denotes all those fields which have been updated by the
assimilation system. This distinction is not strictly necessary for the initialization process,
however it helps to clarify which fields have been touched and updated by the assimilation
system (by making use of observations) and which not. The DWD initialization mode
comes in two flavours, which differ in the way the model state is pulled towards the
analysed state.

Non-Incremental Update

The non-incremental update is conceptually the easiest approach: It starts the model from
the full analysis directly. However, this comes at the price of a somewhat increased noise
level at the beginning of the simulation, due to a missing filtering procedure.

Both the model’s current state, the first guess, and the analysis must have the same validity
time. Table 2.1 provides an overview of the fields that ICON expects to be contained in
the first guess and analysis file at 00UTC. A “yes” in column 2 and 4 indicates that
the corresponding variable is expected to be present in the first guess and analysis file,
respectively. This table shows the optimum situation in the sense that all requested fields
have been found in the input files. This table is part of the ICON runtime log output.

1Note that for so-called idealized test cases no initial conditions must be read in. All necessary state
variables are preset by analytical values.
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As will be explained in Section 9.2, the atmospheric analysis is performed more frequently
compared to the surface analysis. Therefore, the analysis product provided at times dif-
ferent from 00UTC usually contains only a subset of the fields provided at 00UTC. Con-
sequently, Table 2.1 will differ for non-00UTC runs in the sense that the fields

fr seaice h ice t ice t so w so

will be read from the first guess file instead of the analysis file.

Incremental Analysis Update

In the incremental analysis update (IAU) method (Bloom et al., 1996, Polavarapu et al.,
2004) the analysis increment is not added in one time step completely, but it is integrated

into the model integration and added to the model states x
(b)
k over an interval 4T , which

by default is 4T = 3 h. This method of tentatively pulling the model from its current
state (first guess) towards the analysed state acts as a low pass filter in frequency domain
on the analysis increments, such that small scale unbalanced modes are effectively filtered.

In the following, let us assume that we want to start a model forecast at 00UTC. Techni-
cally, the application of this method has some potential pitfalls, which the user should be
aware of:

• The analysis file has to contain analysis increments (i.e. deviations from the first
guess) instead of full fields, with validity time 00UTC. The only exceptions are
FR ICE and T SO, which must be full fields (see Table 2.2).

• The model must be started from a first guess which is shifted back in time
by 1.5 h w.r.t. to the analysis. Thus, in the given example, the validity time of
the first guess must be 22:30UTC of the previous day. This is because “drib-
bling” of the analysis increments is performed over the symmetric 3 h time window
[00UTC− 1.5h, 00UTC + 1.5h]. See Section 4.2.3 for an illustration of this process.

Table 2.2 provides an overview of the fields that ICON expects to be contained in the first
guess and analysis file at 00UTC. ICON internal variable names are given in column 1. A
“yes” in columns 2 or 4 indicates that the corresponding variable is expected to be present
in the first guess and analysis file, respectively. This table shows the optimum situation in
the sense that all requested fields have been found in the input files. This table is part of
the ICON runtime log output.

As already explained in the previous section, the analysis product provided at times dif-
ferent from 00UTC will only contain a subset of the fields provided at 00UTC. Table 2.2
will differ for non-00UTC runs in the way that the fields

fr seaice t so w so

will be read from the first guess and not from the analysis file.
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variable | FG read attempt | FG found | ANA read attempt | ANA found | data from |

--------- | --------------- | -------- | ---------------- | --------- | --------- |

vn | yes | yes | no | | fg |

w | yes | yes | no | | fg |

rho | yes | yes | no | | fg |

theta_v | yes | yes | no | | fg |

qc | yes | yes | no | | fg |

qi | yes | yes | no | | fg |

qr | yes | yes | no | | fg |

qs | yes | yes | no | | fg |

tke | yes | yes | no | | fg |

gz0 | yes | yes | no | | fg |

t_g | yes | yes | no | | fg |

t_mnw_lk | yes | yes | no | | fg |

t_wml_lk | yes | yes | no | | fg |

h_ml_lk | yes | yes | no | | fg |

t_bot_lk | yes | yes | no | | fg |

c_t_lk | yes | yes | no | | fg |

t_b1_lk | yes | yes | no | | fg |

h_b1_lk | yes | yes | no | | fg |

qv_s | yes | yes | no | | fg |

w_i | yes | yes | no | | fg |

t_so | yes | yes | yes | yes | both |

w_so_ice | yes | yes | no | | fg |

w_snow | yes | yes | no | | fg |

rho_snow | yes | yes | no | | fg |

qv | yes | yes | yes | yes | ana |

u | no | | yes | yes | ana |

v | no | | yes | yes | ana |

temp | no | | yes | yes | ana |

pres | no | | yes | yes | ana |

t_ice | yes | yes | yes | yes | ana |

h_ice | yes | yes | yes | yes | ana |

fr_seaice | yes | yes | yes | yes | ana |

w_so | yes | yes | yes | yes | ana |

t_snow | yes | yes | yes | yes | ana |

h_snow | yes | yes | yes | yes | ana |

freshsnow | yes | yes | yes | yes | ana |

Table 2.1.: First guess (FG) and analysis (ANA) input fields as required when starting
from DWD analysis at 00UTC without IAU. “yes/no” in columns 2 and 4
indicates whether a field is expected or not, while “yes/no” in columns 3 and 5
shows whether a field was found and read, or not. Finally, column 6 indicates
whether the respective field was taken from the FG or ANA or both sources.

IAU and limited area: For limited area runs it is not possible to make use of the
IAU method.
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variable | FG read attempt | FG found | ANA read attempt | ANA found | data used |

----------- | --------------- | -------- | ---------------- | --------- | ----------|

vn | yes | yes | no | | fg |

w | yes | yes | no | | fg |

rho | yes | yes | no | | fg |

theta_v | yes | yes | no | | fg |

qv | yes | yes | yes | yes (I) | both |

qc | yes | yes | no | | fg |

qi | yes | yes | no | | fg |

qr | yes | yes | no | | fg |

qs | yes | yes | no | | fg |

tke | yes | yes | no | | fg |

gz0 | yes | yes | no | | fg |

t_g | yes | yes | no | | fg |

t_ice | yes | yes | no | | fg |

h_ice | yes | yes | no | | fg |

t_mnw_lk | yes | yes | no | | fg |

t_wml_lk | yes | yes | no | | fg |

h_ml_lk | yes | yes | no | | fg |

t_bot_lk | yes | yes | no | | fg |

c_t_lk | yes | yes | no | | fg |

t_b1_lk | yes | yes | no | | fg |

h_b1_lk | yes | yes | no | | fg |

qv_s | yes | yes | no | | fg |

w_i | yes | yes | no | | fg |

t_so | yes | yes | yes | yes | both |

w_so | yes | yes | yes | yes (I) | both |

w_so_ice | yes | yes | no | | fg |

t_snow | yes | yes | no | | fg |

rho_snow | yes | yes | no | | fg |

h_snow | yes | yes | yes | yes (I) | both |

freshsnow | yes | yes | yes | yes (I) | both |

snowfrac_lc | yes | yes | no | | fg |

u | no | | yes | yes (I) | ana |

v | no | | yes | yes (I) | ana |

temp | no | | yes | yes (I) | ana |

pres | no | | yes | yes (I) | ana |

fr_seaice | yes | yes | yes | yes | ana |

Table 2.2.: First Guess (FG) and Analysis (ANA) input fields as required when starting
from DWD analysis at 00UTC with IAU. “yes/no” in columns 2 and 4 in-
dicates whether a field is expected, while “yes/no” in columns 3 and 5 shows
whether a field was found and read. The marker (I) in column 5 highlights anal-
ysis increments as opposed to full analysis fields. Finally, column 6 indicates
whether the respective field was taken from the FG or ANA or both sources.

Downloading DWD Analysis

The ICON code contains a script for the automatic request of native (DWD) analysis
data from DWD’s meteorological data management system SKY. It is located in the
subdirectory
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SKY4ICON.PY

Retrieve ICON data from the DWD "Sky" database.

usage: sky4icon.py [-h] [--increment INCREMENT] [--mode MODE] [--ensemble]

[--emember EMEMBER]

startdate enddate

positional arguments:

startdate start date [YYYYMMDDhhmmss]

enddate end date [YYYYMMDDhhmmss]

optional arguments:

-h, --help show this help message and exit

--increment INCREMENT

increment time span [h] (default: 24)

--mode MODE mode: 1=IAU, 2=No IAU (default: 1)

--ensemble read ensemble data (default: False)

--emember EMEMBER ensemble member (default: 1)

Figure 2.5.: Available command-line options for the sky4icon script.

icon-dev/scripts/preprocessing/sky4icon

This script allows to import analysis data for both IAU and non-IAU runs on the native
ICON grid, including data for the ICON-EU nest, starting from January 1, 2015 until
today.

In order to retrieve, for example, 6-hourly initial data from July 1, 2015 00UTC until
July 3, 2015 00UTC for an IAU-based model initialization, the following command line is
used:

./sky4icon 20150701000000 20150703000000 --increment 6

A full set of command-line options can be obtained via sky4icon.py -h, see Fig. 2.5.

Ensemble data: Note that the script supports ensemble data as well. The command-
line options --ensemble --emember EMEMBER allow you to pick one or more anal-
ysis from the LETKF analysis ensemble with 40 km horizontal resolution (member
EMEMBER), as an alternative to the high-resolution (13 km) deterministic analysis
produced by the EnVAR system.

A pre-requisite for running the script is a valid account for the database “roma” (contact
datenservice@dwd.de). An alternative way to get the data is to contact DWD’s data
center (see Section 0.2).
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2.3.2. ECMWF IFS Initial Data

Model runs can also be initialized by “external” analysis files produced by the Integrated
Forecast System (IFS) that has been developed and is maintained by the European Centre
for Medium-Range Weather Forecasts (ECMWF). Initializing the ICON model with IFS
analysis files requires an additional pre-processing step using the DWD ICON Tools. The
details of this procedure are given below.

Downloading IFS Data

The ICON code contains a script for the automatic request for IFS data from
the MARS data base. A full list of mandatory IFS analysis fields is provided
in Table 2.3. The Meteorological Archival and Retrieval System (MARS, see
https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation) is
the main repository of meteorological data at ECMWF.

The script for importing from MARS is part of the ICON source code repository.
It is located in the subdirectory

icon-dev/scripts/preprocessing/mars4icon_smi

Important note:
The mars4icon smi must be executed on the ECMWF computer system!

In order to retrieve, for example, T1279 grid data with 137 levels for the July 1, 2013, the
following command line is used:

./mars4icon_smi -r 1279 -l 1/to/137 -d 2013070100 -O -L 1 -o 20130701.grb -p 5

Further options are shown by typing ./mars4icon_smi -h

Remapping the IFS Data

After the successful MARS download, the IFS data must be interpolated from a regular
grid onto the ICON grid. To this end, the iconremap utility from the DWD ICON Tools
will be used in batch mode. It is important to note that very large grids should always be
processed MPI-parallel in batch mode.

A typical namelist for processing IFS data has the following structure:

&remap_nml

in_grid_filename = "${IFS_FILENAME_GRB}"

in_filename = "${IFS_FILENAME_GRB}"

in_type = 1 ! regular grid

out_grid_filename = "${ICON_GRIDFILE}"
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out_filename = "${IFS_FILENAME_NC}"

out_type = 2 ! ICON grid

out_filetype = 4 ! NetCDF format

/

! DEFINITIONS FOR IFS INPUT DATA

!

&input_field_nml ! temperature

inputname = "T"

outputname = "T"

/

&input_field_nml ! horiz. wind comp. u and v

inputname = "U", "V"

outputname = "VN"

/

&input_field_nml ! vertical velocity

inputname = "OMEGA"

outputname = "W"

/

&input_field_nml ! soil moisture index layer 1

inputname = "SWVL1"

outputname = "SMIL1"

/

...

The control file must contain a separate namelist input field nml for each field of the
list of mandatory input fields given in Table 2.3. The u and v wind components require
special treatment. These must be interpolated to edge-normal wind components vn (see
the namelist above).

Note that ICON requires the soil moisture index (SMI) and not the volumetric soil moisture
content (SWV) as input. The conversion of SWV to SMI is currently performed as part
of the MARS request (mars4icon smi). However, this conversion is not reflected in the
variable short names: The fields containing SMI for each surface layer are still termed
SWVLx. The ICON model, however, expects them to be named SMIx. Therefore, the
proper output name SMIx must be specified explicitly in the namelist input field nml

of iconremap (see the example namelist above).

The DWD ICON Tools contain example run scripts for iconremap for a small number of
computing environments. For the Cray XC 40 environment, see

dwd_icon_tools/example/runscripts/xce_ifs2icon.run

for a script that performs an interpolation of IFS data. Of course, the namelist parameters
which are specified in this file can be also ported for corresponding runs of iconremap on
other platforms. A detailed documentation of the ICON remap namelist parameters can
be found under dwd icon tools/doc/icontools doc.pdf, i. e. Prill (2014).
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2.3.3. ICON-to-ICON Initial Data

Sometimes it is desirable to run ICON at horizontal resolutions which differ from those
of the initial data. One important application are high-resolution limited area runs, which
start from operational ICON forecasts or analysis. In this case horizontal remapping of
the initial ICON data is necessary.

For limited area runs, the set of variables which must be interpolated onto the target
resolution is identical to the first guess dataset in Table 2.1. To be more precise, all
variables for which the data source in Table 2.1 indicates “fg” or “both” are necessary
and must be remapped. Either analysis or forecast datasets can be used. Due to the
necessary remapping step, however, it is not possible to use tiled surface data (the surface
tile approach is used operationally in ICON). Instead, aggregated surface fields must be
remapped. Remapping of the tiled datasets makes no sense, since the tile-characteristics
can differ significantly between a source and target grid cell.

The DWD ICON Tools contain a run script xce remap inidata which performs the remap-
ping. After adjusting the necessary file and directory names in

dwd_icon_tools/icontools/xce_remap_inidata

the script can be submitted to the PBS batch system of the Cray XC 40.

For each of the variables to be remapped, the script contains a namelist input field nml

which specifies details of the interpolation methods and the output name.

Important note:

• When remapping land surface fields, it is advisable to make use of the land
sea mask information (var in mask="FR LAND" in input field nml). By do-
ing so, we mask out water points so that only land points contribute to the
interpolation stencil.

• For simplicity, the script xce remap inidata interpolates the soil water con-
tent W SO directly. A more accurcate and advisable approach would be to con-
vert W SO into the soil moisture index SMI beforehand and transfer it back to
W SO afterwards.

2.3.4. Boundary Data From a Driving Model (ICON-LAM Mode)

During the limited area simulations with ICON, boundary conditions are updated periodi-
cally by reading input files. To this end, forecast or analysis data sets from a driving model
need to be available. These data sets may originate from ICON, IFS and COSMO-DE.2

Between two lateral boundary data samples the boundary data is linearly interpolated.

In this section we shortly describe the process of generating boundary data for these runs.
The boundary data files must contain the following set of variables

2Data sets from other global or regional models may work as well, but have not been tested yet.
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U, V, W, THETA V, DEN, QV, QC, QI, QR, QS, HHL

or, alternatively,

U, V, W, T, P, QV, QC, QI, QR, QS, HHL.

The basic preprocessing steps for ICON-LAM are visualized in Figure 2.6.

ICON-LAM Preprocessing Script

The DWD ICON Tools contain a run script xce limarea which processes a whole directory
of data files (“DATADIR”), mapping the fields onto the boundary zone of a limited area
grid.

The output files are written to the directory specified in the variable OUTDIR. The input
files are read from DATADIR, therefore this directory should not contain other files and
should not be identical to the output folder.

After adjusting the necessary filenames INGRID and LOCALGRID and the input directory
name DATADIR in dwd_icon_tools/icontools/xce_limarea, this script performs the
steps described in the following two sections. The xce limarea script can be submitted
to the PBS batch system of the Cray XC 40.

forecasts initial data

Driving Model

local grid
file

external
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Grid Generator

iconsub remap
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Figure 2.6.: Preprocessing steps for the limited area model ICON-LAM. The grid gener-
ation process is described in Sections 2.1 – 2.2. The initial data processing is
covered by Section 2.3.3. Finally, the script xce limarea for extracting the
boundary data is described in Section 2.3.4.
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Important note: The 3D field HHL field (geometric height of model half levels above
mean sea level) is constant data. However, due to technical reasons, HHL is required
in every boundary data file.

Extract Boundary Region from the Local Grid File

In the first step the above ICON-LAM preprocessing script creates an auxiliary grid file
which contains only the cells of the boundary zone. This step needs to be performed only
once before generating the boundary data.

We use the iconsub program from the collection of ICON Tools, see Section 1.3, with the
following namelist:

&iconsub_nml

grid_filename = "grid_file.nc",

output_type = 4,

lwrite_grid = .TRUE.,

/

&subarea_nml

ORDER = "grid_file_lbc.nc",

grf_info_file = "grid_file.nc",

min_refin_c_ctrl = 1

max_refin_c_ctrl = 14

/

Then running the iconsub tool creates a grid file grid file lbc.nc for the boundary
strip. The cells in this boundary zone are identified by their value in a special meta-data
field, the refin c ctrl index, e. g. refin c ctrl = 1,...,14, see Figure 2.7.

Creating Boundary Data

Any of the data sources explained in the Sections 2.3.1 and 2.3.2 can be chosen for the
extraction of boundary data. To be more precise, it is possible to extract boundary data
from ICON, IFS, and COSMO-DE forecasts.

To this end, we define the following namelist for the iconremap program from the collection
of ICON Tools. This happens automatically in our ICON-LAM preprocessing script:

&remap_nml

in_grid_filename = "input_grid_file"

in_filename = "input_data_file"

in_type = 2

out_grid_filename = "grid_file_lbc.nc"

out_filename = "data_file_lbc.nc"

out_type = 2

out_filetype = 4

/
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Figure 2.7.: Illustration of the ICON-LAM boundary zone. The cells in this boundary zone
are identified by their refin c ctrl index, e. g. refin c ctrl = 1,...,14.

Here, the parameters in type=2 and out type=2 specify that both grids correspond to
triangular ICON meshes (in grid filename and out grid filename). Additionally, a
namelist input field nml is appended for each of the preprocessed variables.

With respect to the output filename data file lbc.nc it is a good idea to follow a
consistent naming convention. See Section 5.1.4 on the corresponding namelist setup of
the ICON model.

Note that the input data file must contain only a single time step when running the
iconremap tool. The iconremap tool therefore must be executed repeatedly in order to
process the whole list of boundary data samples (this is automatically done within the
xce limarea script).

In this context the following technical detail may considerably speed up the preprocess-
ing: The iconremap tool allows to store and load interpolation weights to and from a
NetCDF file. When setting the namelist parameter ncstorage file (character string) in
the iconremap namelist remap nml, the remapping weights are loaded from a file with this
name. If this file does not exist, the weights are created from scratch and then stored for
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later use. Note that for MPI-parallel runs of the iconremap tool multiple files are created.
Re-runs require exactly the same number of processes.

2.4. Exercises

Preparation of Global Runs

In this exercise, you will deal with the necessary preparatory steps for performing global
real-case ICON runs.

EX 2.1

Download of global data: Retrieve the necessary grids and external parameter files
from the ICON download server (see Section 2.1.3).

• Open the download page for the pre-defined ICON grids
http://icon-downloads.zmaw.de in your web browser.

• Pick the R2B06 grid no. 24 from the list and right-click on the hyperlink for
the grid file, then choose ”copy link location”.

• Open a terminal window, login into the Linux cluster lce, and change into the
input subdirectory of case2. Download the grid file into this subdirectory by
typing wget link location -e http-proxy=ofsquid.dwd.de:8080.

• Repeat the last steps for downloading the grid connectivity information (see
Section 2.1.1 for explanation) and for the R2B07 N02 grid no. 28 (EU-nest).

• Pick the NetCDF version of the most recent ExtPar (external parameter) file
in the browser list (creation date 2015-08-05) and perform the previous steps
in order to download this file as well. Watch out that the ExtPar file matches
with the grid, i. e. make sure that both filenames contain the same
number (24). The ExtPar data file must have the tile suffix. Repeat this step
for the ExtPar file that matches with the grid no. 28.

• Download the R2B05 grid no. 23 together with its grid connectivity data. This
is the reduced (coarser) grid for radiation.

• Take a look at the grid data and the external parameters using the ncdump

utility, see Section 7.1.1 for details. Find out whether the external parameter
fields are defined at the grid vertices, edge midpoints or cells.

EX 2.2

Retrieving DWD analysis data for global forecast runs:

• Request native analysis data from DWD’s meteorological data management
system SKY for the date 2017-01-12T00:00:00 at a horizontal resolution of
40 km using the sky4icon script, see Section 2.3.1:

./sky4icon 20170112000000 20170112000000 --mode 1 \
--ensemble --emember 1
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• Take a look at the data with the grib ls command-line tool.

• Export the environment variable GRIB DEFINITION PATH with the setting

GRIB_DEFINITION_PATH=$GRIB_SAMPLES_PATH/../definitions

and run grib ls once more. Are there any differences wrt. the displayed short
names? See Section 1.1.2 for an explanation.

EX 2.3

Retrieving IFS data:

Prepare the initial data for ICON to start from an IFS analysis.

• Start the mars4icon script and download an IFS analysis file for the date
2017-01-12T00:00:00, see Section 2.3.2.

• Interpolate the data horizontally from the lat/lon grid onto the triangular
ICON grid using iconremap. The run script case4/xce ifs2icon.run will do
this job. Fill in the name of the IFS file by setting in grid filename and
in filename. Further help on iconremap can be found in Section 2.3.2.

• Submit the iconremap job to the Cray XC 40.

• List the fields contained in the output file using cdo and/or ncdump. Compare
this to Table 2.3. Besides, find out which field(s) are not defined on cell
circumcenters.

Preparation of Limited Area Runs

Note:
The following exercise requires a number of data files which are produced as model
output in the real data exercise, Ex. 4.5.

EX 2.4

Local grid file and its external parameters:

• In the directory case3/input you find an archive file which is the result of the
web-based grid generator described in Section 2.2.2.

Uncompress this file and visualize its content with the NCL file
case3/plot grid.ncl. See Figure 5.2 for a reference.

• Investigate the grid file with the ncdump utility (see Section 7.1.1): How many

triangle cells are contained in the local grid? – Answer: cells

Remapping of initial data:

The directory “lam forcing” generated by the real case run contains a file with the
prefix init, which will serve as initial conditions for the limited area run. Remap
the data onto the local grid.
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The subdirectory case3 contains a script xce remap inidata which will do the
remapping.

• Insert the path to the ICON Tools binaries, and

• adapt the path to the input data file (directory “lam forcing” generated by
real case run).

Inspect the local (TARGET) grid file and the grid which was used in Ex. 4.5 for
creating the initial data (SOURCE).

• Identify the resolution of both grids in ICON’s RxBy nomenclature. (You
could make use of ncdump.)

SOURCE grid remap data TARGET grid

−→

• If the source grid has a horizontal resolution of ≈ 20 km, what is the resolution
of your local (TARGET) grid in km, given the RxBy expessions identified above
(see Eq. 2.1)?

– Answer: TARGET grid res. km

Run the script.

• Check the result: The remapping script should have created a file with prefix
init in case3/output.

Remapping of boundary data:

• The subdirectory case3 contains a copy of the DWD ICON Tools script
xce limarea, see Section 2.3.4. Open this script and

– insert the path to the ICON Tools binaries,

– adapt the path to input data files (directory “lam forcing” generated by
real case run).

• run the script.

• Check the result: Visualize the boundary data with the NCL script
case3/plot boundary data.ncl.

• Investigate the files: How many cells are contained in the boundary grid?

– Answer: cells

• When looking at the set of boundary data variables, do you have any idea for
further improvement in terms of storage space?
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Table 2.3.: Mandatory IFS analysis fields on a regular lat-lon grid, as retrieved by the
script mars4icon smi.

ShortName (ECMWF) Description

U, V horizontal velocity components
OMEGA vertical velocity
T Temperature
FI geopotential (at model levels)
QV specific humidity
CLWC cloud liquid water content
CIWC cloud ice content
CRWC rain water content
CSWC snow water content

SST sea surface temperature
CI sea-ice cover
LNSP logarithm of surface pressure
Z surface geopotential
TSN snow temperature
SD water content of snow
RSN density of snow
ASN snow albedo
SKT skin temperature
STL1 soil temperature level 1
STL2 soil temperature level 2
STL3 soil temperature level 3
STL4 soil temperature level 4
SWVL1 soil moisture index (SMI) layer 1
SWVL2 soil moisture index (SMI) layer 2
SWVL3 soil moisture index (SMI) layer 3
SWVL4 soil moisture index (SMI) layer 4
SRC water content of interception storage
SR surface roughness
LSM land/sea mask
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3. Running Idealized Test Cases

As opposed to real-case runs, idealized test cases typically do not require any external
parameter or analysis fields for initialization. Instead, all initial conditions are computed
within the ICON model itself, based on analytical functions. These are either evaluated
pointwise at cell centers, edges, or vertices, or are integrated over the triangular control
volume.

The ability to run idealized model setups serves as a simple possibility to test the cor-
rectness of particular aspects of the model, either by comparison with analytic reference
solutions (if they exist), or by comparison with results from other models. Beyond that,
idealized test cases may help the scientist to focus on specific atmospheric processes.

3.1. Namelist Input for the ICON Model

In general, the ICON model is controlled by a so-called parameter file which uses Fortran
NAMELIST syntax. Default values are set for all parameters, so that you only have to
specify values that differ from the default.

Assuming that ICON has been compiled successfully, the next step is to adapt these
ICON namelists. Discussing all available namelist switches is definitely beyond the scope
of this tutorial. We will merely focus on the particular subset of namelist switches that
is necessary to setup an idealized model run. A complete list of namelist switches can be
found in the namelist documentation

icon-dev/doc/Namelist_overview.pdf

ICON provides a set of pre-implemented test cases of varying complexity and focus, ranging
from pure dynamical core and transport test cases to “moist” cases, including microphysics
and potentially other parameterizations. A complete list of available test cases can also be
found in the namelist documentation, mentioned above.

Individual test cases can be selected and configured by namelist parameters of the namelist
nh testcase nml. To run one of the implemented test cases, only a horizontal grid file has
to be provided as input. A vertical grid file containing the height distribution of vertical
model levels is usually not required, since the vertical grid is constructed within the ICON
model itself, based on a set of namelist parameters described below.
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3.2. Vertical coordinates

The total number of vertical levels has to be specified separately via

num lev (namelist run nml, list of integer value)
Comma-separated list of integer values giving the number of vertical full levels for
each domain.

The treatment of terrain in ICON is handled through the use of height-based terrain
following coordinates. Two formulations are available, which are briefly described below.

3.2.1. Terrain-following Hybrid Gal-Chen Coordinate

The terrain-following hybrid Gal-Chen coordinate (Simmons and Burridge, 1981) is an
extension of the classic terrain-following cordinate introduced by Gal-Chen and Somerville
(1975). As shown by Klemp (2011), it can be expressed in the form

z(x, y, η) =
(H −B′(η)h(x, y))

H
η +B′(η)h(x, y)

= η +B′(η)
(

1− η

H

)
h(x, y) , (3.1)

where z represents the height of the coordinate surfaces η, h(x, y) is the terrain height,
and H denotes the domain height. With B′(η) = 1 the coordinate reverts to the classic
formulation by Gal-Chen and Somerville (1975), i.e. the coordinate is terrain-following at
the surface (η = 0) and becomes flat at model top (η = H). By choosing B′ appropriately,
a more rapid transition from terrain-following at the surface toward constant height can
be achieved. One popular choice is to set

B′(η)
(

1− η

H

)
= 1− η

zflat
, with zflat < H

such that coordinate surfaces become constant height surfaces above z = zflat. Sometimes,
Equation (3.1) is also written in the discretized form

zh(x, y, k) = A(k) +B(k)h(x, y) , k = 1, ...,nlev + 1 (3.2)

where k denotes the vertical level index and zh is the half level height.

Configuring the Hybrid Gal-Chen Coordinate

The main switch for selecting the SLEVE vertical coordinate is

ivctype = 1 (namelist nonhydrostatic nml, integer value)

In that case the user has to provide the vertical coordinate table (vct) as an input file.
The table consists of the A and B values (see Equation (3.2)) from which the half level
heights zh(x, y, k) can be deduced. A(k)[m] are fixed height values, with A(1) defining the
model top height H and A(nlev + 1) = 0 m. The dimensionless values B(k) control the
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vertical decay of the topography signal, with B(1) = 0 and B(nlev + 1) = 1. Thus, at
each horizontal grid point zh(x, y, 1) is the model top height, while zh(x, y,nlev + 1) is the
surface height.

The structure of the expected input file is depicted in Table 3.1. Example files can be
found in icon-dev/vertical coord tables. The file must obey the following naming
rule: atm hyb sz [nlev], where [nlev] must be replaced by the total number of full levels.
ICON expects the file to be located in the base directory from which the model is started.
Note that the filename specification must not be confused with another parameter which
has a similar name, grid nml/vertical grid filename!

# File structure

# --------------

# A and B values are stored in arrays vct_a(k) and vct_b(k).

# The files in text format are structured as follows:

#

# -------------------------------------

# | k vct_a(k) [m] vct_b(k) [] | <- first line of file = header line

# | 1 A(1) B(1) | <- first line of A and B values

# | 2 A(2) B(2) |

# | 3 A(3) B(3) |

# | . |

# | . |

# | nlev+1 A(nlev+1) B(nlev+1)| <- last line of A and B values

# |=====================================| <- lines from here on are ignored

# |Source: | by mo_hyb_params:read_hyb_params

# |<some lines of text> |

# |Comments: |

# |<some lines of text> |

# |References: |

# |<some lines of text> |

# -------------------------------------

Table 3.1.: Structure of vertical coordinate table as expected by the ICON model.

3.2.2. SLEVE Coordinate

In the case of a terrain-following hybrid Gal-Chen coordinate the influence of terrain on the
coordinate surfaces decays only linearly with height. The basic idea of the Smooth Level
Vertical SLEVE coordinate (Schär et al., 2002, Leuenberger et al., 2010) is to increase
the decay rate, by allowing smaller-scale terrain features to be removed more rapidly with
height. To this end, the topography h(x, y) is divided into two components

h(x, y) = h1(x, y) + h2(x, y),

where h1(x, y) denotes a smoothed representation of h(x, y), and h2(x, y) = h(x, y) −
h1(x, y) contains the smaller-scale contributions. The coordinate is then defined as

z(x, y, η) = η +B1(η)h1(x, y) +B2(η)h2(x, y) .
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Different decay functions B1 and B2 are now chosen for the decay of the large- and small-
scale terrain features, respectively. These functions are selected such, that the influence
of small-scale terrain features on the coordinate surfaces decays much faster with height
than their large-scale (well-resolved) counterparts.

Configuring the SLEVE Coordinate

The main switch for selecting the SLEVE vertical coordinate is

ivctype = 2 (namelist nonhydrostatic nml, integer value)

The vertical grid is constructed during the initialization phase of ICON, based on ad-
ditional parameters defined in sleve nml. Here we will only discuss the most relevant
parameters. For a full list, the reader is referred to the namelist documentation.

Namelist sleve nml:

top height (namelist sleve nml, real value)
Height of model top.

flat height (namelist sleve nml, real value)
Height above which the coordinate surfaces become constant height surfaces.

min lay thckn (namelist sleve nml, real value)
Layer thickness of lowermost layer.

Note for advanced users: On default, a vertical stretching is applied such that co-
ordinate surfaces become non-equally distributed along the vertical, starting with a
minimum thickness of min lay thckn between the lowermost and second lowermost
half-level. If constant layer thicknesses are desired, min lay thckn must be set to a
value ≤ 0. The layer thickness is then determined as top height/num lev.

3.3. Jablonowski-Williamson Baroclinic Wave Test

From the set of available idealized test cases we choose the Jablonowski-Williamson baro-
clinic wave test and walk through the procedure of configuring and running this test in
ICON.

The Jablonowski-Williamson baroclinic wave test (Jablonowski and Williamson, 2006) has
become one of the standard test cases for assessing the quality of dynamical cores. The
model is initialized with a balanced initial flow field. It comprises a zonally symmetric base
state with a jet in the midlatitudes of each hemisphere and a quasi realistic temperature
distribution. Overall, the conditions resemble the climatic state of a winter hemisphere.
This initial state is in hydrostatic and geostrophic balance, but is highly unstable with
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Figure 3.1.: Surface Pressure and 850 hPa Temperature at day 9 for the Jablonowski-
Williamson test case on a global R2B5 grid.

respect to baroclinic instability mechanisms. Thus, it should remain stationary if no per-
turbation is imposed.

To trigger the evolution of a baroclinic wave in the northern hemisphere, the initial condi-
tions are overlayed with a weak (and unbalanced) zonal wind perturbation. The perturba-
tion is centered at (20◦E, 40◦N). In general, the baroclinic wave starts growing observably
around day 4 and evolves rapidly thereafter with explosive cyclogenesis around model
day 8. After day 9, the wave train breaks (see Figure 3.1). If the integration is contin-
ued, additional instabilities become more and more apparent especially near the pentagon
points (see Section 2.1.1), which are an indication of spurious baroclinic instabilites trig-
gered by numerical discretization errors. In general, this test has the capability to assess

• the diffusivity of a dynamical core,

• the presence of phase speed errors in the advection of poorly resolved waves,

• the strength of grid imprinting.

In Jablonowski et al. (2008) it is suggested to add a variety of passive tracers to the
baroclinic wave test case, in order to investigate the general behaviour of the advection
algorithm. Questions that could be addressed are

• whether the advection scheme is monotone or positive-definite,
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• how accurate or diffusive the advection scheme is,

• whether a constant tracer distribution is preserved (which checks for tracer-air mass
consistency).

Four different tracer distributions are implemented, whose initial distributions are de-
picted in Figure 3.2. See Jablonowski et al. (2008) for further information on the initial
distributions.

Figure 3.2.: Initial tracer distributions which are available for the Jablonowski-Williamson
test case. Tracer q3 only depends on the latitudinal position, and tracer q4 is
constant.

3.3.1. Main Switches for the Idealized Test Case

This section explains several namelist groups and main switches that are necessary for
setting up an idealized model run. Settings for the Jablonowski-Williamson test case are
given in red.

Namelist run nml:

ltestcase = .TRUE. (namelist run nml, logical value)
This parameter must be set to .TRUE. for running idealized test cases.

iforcing = 0 (namelist run nml, integer value)
Forcing of dynamics and transport by parameterized processes. If set to 0, forcing
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is switched off completely (pure dynamical core test case). This implies that all
physical parameterizations (see nwp phy nml) are switched off automatically. If set
to 3, dynamics are forced by NWP-specific parameterizations. Individual physical
processes can be controlled via nwp phy nml, see also Table 5.1. In general, the setting
of iforcing depends on the selected testcase.

ldynamics = .TRUE. (namelist run nml, logical value)
Main switch for the dynamical core. If set to .TRUE., the dynamical core is
switched on and details of the dynamical core can be controlled via dynamics nml,
nonhydrostatic nml and diffusion nml. If set to .FALSE., the dynamical core is
switched off completely. This is rarely needed, but can be useful for idealized tests
of physics packages with prescribed dynamical forcing.

ltransport = .FALSE./.TRUE. (namelist run nml, logical value)
Main switch for the transport of passive tracers. If set to .TRUE., transport
is switched on and details of the transport schemes can be controlled via
transport nml. If set to .FALSE., transport of passive tracers is switched off com-
pletely.

Namelist nh testcase nml:

nh test name = ’jabw’ (namelist nh testcase nml, string parameter)
Main switch for selecting a testcase. nh test name=’jabw’ selects the Jablonowski-
Williamson baroclinic wave test case.

Namelist extpar nml:

itopo = 0 (namelist extpar nml, integer value)
If set to 1, the model tries to read topography data and external parameters from
file. If set to 0, no input file is required for model initialization. Instead, all initial
conditions are computed within the ICON model itself. Usually, itopo should be set
to 0 for running idealized test cases.

3.3.2. One-Way Nesting and Two-Way-Nesting

While the above switches are necessary to specify the type of simulation (idealized vs.
real-case), nothing has been specified so far regarding the computational domain. ICON
has the capability for running

• global simulations on a single global grid,

• global simulations with refined nests (so called patches or domains), and

• limited area simulations, see Chapter 5.
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Here, the use of nests requires an additional remark. The refined nests are tightly embedded
into the global simulation in the sense that the prognostic variables are synchronized in
every (dynamical-core) time step of the parent domain.

In more detail this can happen in two ways:

feedback

parent gridnest grid

In a one-way nested simulation the prognostic fields (or, in the default setup: the re-
spective tendencies) are prolongated within the nest boundary region from the coarser
parent grid to the finer nest grid. They are incorporated into the next iteration of the
nest’s dynamical core, but the fine-scale variables do not influence the global state.

On the other hand, the result state of the nested grid may also be transferred back
to the coarser parent grid in a feedback loop. In ICON this is called a two-way nested
simulation.

Note for advanced users: Even when choosing different numbers of vertical levels,
vertical layers between the nested and the parent domain must match. Therefore,
the nested domain may only have a lower top level height!

3.3.3. Specifying the Computational Domain(s)

In the following we will explain how the Jablonowski-Williamson test case can be set up
for a global domain only and, in a second step, for a global domain with nests.

Namelist grid nml:

dynamics grid filename (namelist grid nml, list of string parameters)
Here, the name(s) of the horizontal grid file(s) must be specified. For a global sim-
ulation without nests, of course, only a single filename is required. For a global
simulation with multiple nests a filename must be specified for each domain. Note
that each name must be enclosed by single quotation marks and that multiple names
must be separated by a comma (see the example below).
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Figure 3.3.: Location of available nests for the baroclinic wave test case. The perturbation
triggering the baroclinic wave is centered at (20◦E, 40◦N) (red circle).

dynamics parent grid id (namelist grid nml, list of integer values)
Comma-separated list of integer values. For each domain, the grid ID of its parent
domain must be specified. Grid IDs start with 1. A value of 0 indicates that a domain
has no parent domain (i.e. the global domain).

Examples

Example 1: Settings for a global Jablonowski-Williamson test run without nest

dynamics grid filename = ’icon grid 0014 R02B05 G.nc’

dynamics parent grid id = 0

num lev = 40

Example 2: For a global Jablonowski-Williamson test run including a single nest

dynamics grid filename =

’icon grid 0014 R02B05 G.nc’,’icon grid 0014 R02B05 N06 1.nc’

dynamics parent grid id = 0,1

num lev = 40,40

Example 3: Settings for a global Jablonowski-Williamson test run including two nests
on the same nesting level (i.e. combination of Figure 3.3)

dynamics grid filename =

’icon grid 0014 R02B05 G.nc’,’icon grid 0014 R02B05 N06 1.nc’,

’icon grid 0014 R02B05 N06 2.nc’

dynamics parent grid id = 0,1,1

num lev = 40,40,40

Some additional information on the grid file naming convention can be found in Sec-
tion 2.1.1.

3.3.4. Basic Control Variables

The integration time step and simulation length are defined as follows:
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Namelist run nml:

dtime = 720 (namelist run nml, real value)
Time step in seconds (for the top-most domain). Note that it is not necessary to
specify a time step for each domain. For each nesting level, the time step is auto-
matically divided by a factor of two. More details on ICON’s time step will be given
in Section 4.1.

nsteps = 1200 (namelist run nml, integer value)
Number of time steps.

Output is controlled by the namelist group output nml. It is possible to define more than
one output namelist and each output namelist has its own output file attached to it. For
example, the run script that is used in Exercise 3.1 contains three output namelists. The
details of the model output specification are discussed in Section 4.3.

3.4. Exercises

In this exercise you will learn how to set up idealized runs in ICON with and without
nested domains.

Job submission to the Cray XC 40 can be performed on the Linux cluster lce. Note,
however, that visualization tools (CDO, NCL, ncview) are only available on
the lce!

Running the Jablonowski-Williamson Test Case

EX 3.1

Preparations:

Retrieve the necessary grid file from the ICON download server (see Section 2.1.3):

• Open the download page for the pre-defined ICON grids
http://icon-downloads.zmaw.de in your web browser.

• Pick the R2B05 grid no. 14 from the list and right-click on the hyperlink for
the grid file, then choose ”copy link location”.

• Open a terminal window, login into the Linux cluster lce, and change into the
subdirectory test cases/case1/input. Download the grid file into this
subdirectory by typing wget link location -e

http-proxy=ofsquid.dwd.de:8080.

Run the Jablonowski-Williamson (JW) test case without nested domains:

• Change into the run script directory test cases/case1. The run script is
named run ICON R02B05 JW.
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• Fill in the name of the ICON model binary (including the path) and several
missing namelist parameters. I.e. set ltestcase, ldynamics, iforcing,
nh test name and itopo. See Section 1.1.1 for the location of your ICON
model binary and Section 3.3.1 for additional help on the namelist parameters.

• Submit the job to the Cray XC 40, using the PBS command qsub.

• Check the job status via qstat.

• Go to the output directory of case1. You will find three NetCDF output files
with (a) model level output on the native (triangular) grid, (b) pressure level
output on the native grid, (c) model level output interpolated onto a regular
lat-lon grid.

• Have a closer look to the different output files and their internal structure to
find out which one is which. We suggest to use the tools cdo and ncdump as
described in Section 7.1.
What output interval (in h) has been used? – Answer: h

• Visualize the output with one of the tools described in Section 7. An NCL
script named JW plot.ncl is available in test cases/case1.

• Compare the output of the NCL script with the reference JABW DOM01.ps

given in subdirectory reference.

EX 3.2

Repeat the run of the previous exercise with a nested subdomain.

• Go to the run script directory. The run script for a nested grid experiment is
termed run ICON R02B05N6 JW.

• Fill in the name of your ICON model binary and missing namelist parameters.
I.e. extend atmo dyn grids, num lev (run nml) and dynamics parent grid id

(grid nml), see Section 3.3.3 for additional help. The same output fields as for
the global domain will be generated for the regional domain(s).

The location of the prepared nests is depicted in Figure 3.3. Feel free to add
one or both nests to your global domain.

• Submit the job to the Cray XC 40.

• After the job has finished, visualize the output on the global domain as well as
on nest(s) using one of the tools described in Section 7. When using NCL
(JW plot.ncl), you will have to adapt workdir and domain nr.

• Also compare the results on the global domain with those of the previous
exercise. Does the global domain output differ? If so, do you have an
explanation for this?
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Optional Exercise: Tracer Advection

EX 3.3

The JW test case provides a set of four pre-defined idealized tracer fields (see
Figure 3.2). Here, we will learn how to enable and control the transport of passive
tracers in idealized tests.

• Enable tracer advection:

– Go to the directory test cases/case1 and open the run script
run ICON R02B05N6 JW.

– Enable the transport module by setting the main switch ltransport

to .TRUE..

– Enable (uncomment) the namelist transport nml, which specifies details
of the applied transport scheme.

– Select one or more tracers from the set of pre-defined tracer distributions
(see Figure 3.2). A specific distribution can be selected by adding the
respective tracer number (1,2,3, or 4) to tracer inidist list (namelist
nh testcase nml, comma-separated list of integer values).

• Extend the output namelist

– Add the selected tracer fields to the list of output fields in the namelists
output nml (namelist parameters ml varlist and pl varlist).

For idealized testcases, tracer fields are named qx, where x is equal to the
suffix specified via the namelist variable tracer names (namelist
transport nml, comma-separated list of string parameters). The nth entry
in tracer names specifies the suffix for the nth entry in
tracer inidist list.
If nothing is specified, tracer fields are named qx, where x is a number
indicating the position of the tracer within the ICON-internal 4D tracer
container.

• Visualization: Enable lplot transport in your NCL script. You can also have
a quick look using ncview.

• Have a look at tracer q4. Initially it is constant (= 1) everywhere. Ideally, an
initially constant tracer should stay constant for all times, no matter how
complicated the flow. Does ICON preserve a constant tracer with/without
nest?
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4. Real Data Test Cases

In this lesson you will learn about the ICON time-stepping and how to initialize and run
the ICON model in a realistic NWP setup. Data provided by DWD’s Data Assimilation
Coding Environment (DACE) will serve as initial conditions. Before we conclude this
chapter with some exercises, the different mechanisms for parallel execution of the ICON
model will be discussed.

4.1. ICON Time-Stepping

For efficiency reasons, different integration time steps are applied depending on the process
under consideration. In the following, the term dynamical core refers to the numerical
solution of the dry Navier-Stokes equations, while the term physics refers to the diabatic,
mostly sub-grid scale, processes that have to be parameterized. In ICON, the following
time steps have to be distinguished:

∆t the basic time step specified via namelist variable dtime, which is used
for tracer transport, numerical diffusion and the fast-physics parameter-
izations.

∆τ the short time step used within the dynamical core; the ratio be-
tween ∆t and ∆τ is specified via the namelist variable ndyn substeps

(namelist nonhydrostatic nml, number of dynamics substeps), which
has a default value of 5.

∆ti,slow physics the process dependent slow physics time steps; they should be integer
multiples of ∆t and are rounded up automatically if they are not.

An illustration of the relationship between the time steps can be found in Figure 4.1. More
details on the physics-dynamics coupling will be presented in Section 5.2.2.

ICON solves the fully compressible nonhydrostatic Navier-Stokes equations using a time
stepping scheme that is explicit except for the terms describing vertical sound wave propa-
gation. Thus, the maximum allowable time step ∆τ for solving the momentum, continuity
and thermodynamic equations is determined by the fastest wave in the system - the sound
waves. As a rule of thumb, the maximum dynamics time step can be computed as

∆τ = 1.8 · 10−3 ∆x
s

m
, (4.1)

where ∆x is the effective horizontal mesh size in meters (see Equation (2.1)). This implies
that the namelist variable dtime should have a value of

∆t = 9 · 10−3 ∆x
s

m
,
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simulation time

radiation

convection

non-orographic gravity wave drag

orographic gravity wave drag (SSO)

t
= advectiont

τ

Figure 4.1.: ICON internal time stepping. Sub-cycling of dynamics with respect to trans-
port, fast-physics, and slow-physics. ∆t denotes the time step for transport
and fast physics and ∆τ denotes the short time step of the dynamical core.
The time step for slow-physics can be chosen individually for each process.
Details of the physics-dynamics coupling will be discussed in Chapter 5.2.

unless ndyn substeps is set to a non-default value.

Historical remark: Note that historically, ∆τ rather than ∆t was used as basic
control variable specified in the namelist, as appears logical from the fact that a
universal rule for the length of the time step exists for ∆τ only. This was changed
shortly before the operational introduction of ICON because it turned out that
an adaptive reduction of ∆τ is needed in rare cases with very large orographic
gravity waves in order to avoid numerical instabilities. To avoid interferences with
the output time control, the long time step ∆t was then taken to be the basic
control variable, which always remains unchanged during a model integration. The
adaptive reduction of ∆τ is now accomplished by increasing the time step ratio
ndyn substeps automatically up to a value of 8 if the Courant number for vertical
advection grows too large.

Time step for nested domains: In case of nested setups, the time step ∆t needs
to be specified for the global domain only. The adaption for nested regions is done
automatically, by multiplying ∆t with a factor of 0.5 for each nesting level. This
factor is hard-coded.

Additional time step restrictions for ∆t arise from the numerical stability of the horizontal
transport scheme and the physics parameterizations, in particular due to the explicit
coupling between the turbulent vertical diffusion and the surface scheme. Experience shows
that ∆t should not significantly exceed 1000 s, which becomes relevant when ∆x is larger
than about 125 km.
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Even longer time steps than ∆t can be used for the so-called slow-physics parameteriza-
tions, i.e. radiation, convection, non-orographic gravity wave drag, and orographic gravity
wave drag. These parameterizations provide tendencies to the dynamical core, allowing
them to be called individually at user-specified time steps. The related namelist switches
are dt rad, dt conv, dt gwd and dt sso in nwp phy nml. If the slow-physics time step
is not a multiple of the advective time step, it is automatically rounded up to the next
advective time step. A further recommendation is that dt rad should be an integer mul-
tiple of dt conv, such that radiation and convection are called at the same time. The
time-splitting is schematically depicted in Figure 4.1.

4.2. Model Initialization

The necessary input data to perform a real data run have already been described in
Chapter 2. These include

• grid files, containing the horizontal grid information,

• external parameter files, providing information about the earth’s soil and land prop-
erties, as well as climatologies of atmospheric aerosols,

• initial data (analysis) for atmosphere and land,

• boundary data in the case of limited area runs.

ICON is capable of reading analysis data from various sources (see Section 2.3), including
data sets generated by DWD’s Data Assimilation Coding Environment (DACE) and inter-
polated IFS data. Boundary data for limited area runs can be taken from forecasts/analysis
of the latter two models as well as from COSMO-DE. In the following we provide some
guidance on the basic namelist settings for real data runs, according to the data set at
hand and chosen initialization mode.

4.2.1. Basic Settings for Running Real Data Runs

Most of the main switches, that were used for setting up idealized test cases, are also
important for setting up real data runs. Many of them have already been discussed in
Section 3.1, so we will mainly concentrate on their settings for real data runs. As before,
settings appropriate for the exercises in this chapter are given in red.

Namelist time nml:

For real case runs, it is important that the user specifies the correct start date and time
of the simulation. This is done with ini datetime string using the ISO8601 format.

ini datetime string = YYYY-MM-DDThh:mm:ssZ (namelist time nml)
— This must exactly match the validity time of the analysis data set!

Wrong settings lead to incorrect solar zenith angles and wrong external parameter fields.
Setting the end date and time of the simulation via end datetime string is optional. If
end datetime string is not set, the user has to set the number of time steps explicitly
in nsteps (run nml), which is otherwise computed automatically.
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Namelist run nml:

ltestcase = .FALSE. (namelist run nml, logical value)
This parameter must be set to .FALSE. for real case runs.

iforcing = 3 (namelist run nml, integer value)
A value of 3 means that dynamics are forced by NWP-specific parameterizations.

ldynamics = .TRUE. (namelist run nml, logical value)
The dynamical core must, of course, be switched on.

ltransport = .TRUE. (namelist run nml, logical value)
Transport of (passive) tracers must be switched on. This is necessary for the trans-
port of cloud and precipitation variables. Details of the transport schemes can be
controlled via transport nml.

Namelist grid nml:

dynamics grid filename (namelist grid nml, list of string parameters)
Here, the name(s) of the horizontal grid file(s) must be specified. For a global sim-
ulation without nests, of course, only a single filename is required. For a global
simulation with multiple nests, a filename must be specified for each domain. Note
that each name must be enclosed by single quotation marks and that multiple names
must be separated by a comma (see Section 3.3.3 and the examples therein).

dynamics parent grid id (namelist grid nml, list of string parameters)
Comma-separated list of integer values. For each domain, the grid ID of its parent
domain must be specified. Grid IDs start with 1 and 0 indicates that a domain has
no parent domain (i.e. the global domain).

radiation grid filename (namelist grid nml, string parameter)
If the radiative transfer computation should be performed on a coarser grid than the
dynamics (one level coarser, resolution 2∆x), the name(s) of the grid file(s) to be
used for radiation must be specified here. See Section 6.2 for further details.

Namelist extpar nml:

itopo = 1 (namelist extpar nml, integer value)
For real data runs this parameter must be set to 1. The model now expects one file
per domain from which it tries to read topography data and external parameter.

extpar filename (namelist extpar nml, string parameter)
Filename(s) of external parameter input file(s). If the user does not provide namelist
settings for extpar filename, ICON expects one file per domain to be present in
the experiment directory, following the naming convention

extpar_filename = "extpar_<gridfile>.nc"
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The keyword <gridfile> is automatically replaced by ICON with the grid filename
specified for the given domain (dynamics grid filename). As opposed to the grid-
file specification namelist variables (see above), it is not allowed to provide a comma-
separated list. Instead, the usage of keywords provides full flexibility for defining the
filename structure. See also Section 4.2.2 for additional keywords.

Namelist initicon nml:

As mentioned previously, ICON allows for different real data initialization modes. The
mode in use is controlled via the namelist switch init mode.

init mode (namelist initicon nml, integer value)
It is possible to

• start from DWD analysis without the incremental analysis update (IAU) pro-
cedure (see Section 2.3.1): init mode = 1

• start from interpolated IFS analysis (see Section 2.3.2): init mode = 2

• start atmosphere from interpolated IFS analysis and soil/surface from interpo-
lated ICON/GME fields: init mode = 3

• start from DWD analysis, and make use of the IAU procedure to reduce initial
noise (see Section 2.3.1): init mode = 5

• The initialization modes init mode = 4 and init mode = 7 start from inter-
polated COSMO-DE or ICON/IFS forecasts for limited area runs. Limited area
simulations are a feature which will be addressed in Chapter 5.

The most relevant modes are modes 1, 2, 5 and 7. Modes 1, 2 and 5 are relevant for global
ICON simulations with and without nests. They will be explained in more detail below.

ICON supports NetCDF and GRIB2 as input format for the DWD input fields. In this
context it is important to note that the field names that are used in the GRIB2 input
files do not necessarily coincide with the field names that are internally used by the ICON
model. To address this problem, an additional input text file is provided, a so-called
dictionary file. This file translates between the ICON variable names and the corresponding
DWD GRIB2 short names.

Generally the dictionary is provided via the following namelist parameter:

ana varnames map file (namelist initicon nml, string parameter)
Filename of the dictionary for mapping between internal names and GRIB2 short
names. An example can be found in icon-dev/run/ana varnames map file.txt.

4.2.2. Starting from DWD Analysis

Given that a valid DWD analysis data set for non-incremental update is available (see
Section 2.3.1), starting from DWD analysis data is basically controlled by the following
three namelist parameters:
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init mode = 1 (namelist initicon nml, integer value)
To start from DWD analysis data (without incremental analysis update), the ini-
tialization mode must be set to 1.

In that case the ICON model expects two input files per domain: One containing the
ICON first guess (3h forecast) fields, which served as background fields for the assimilation
process. The second one contains the analysis fields produced by the assimilation process.

dwdfg filename (namelist initicon nml, string parameter)
Filename of the DWD first guess input file.

dwdana filename (namelist initicon nml, string parameter)
Filename of the DWD analysis input file.

Remember to make sure that the validity date for the first guess and analysis input file is
the same and matches the model start date given by ini datetime string.

Input filenames need to be specified unambiguously, of course. By default, if the user does
not provide namelist settings for dwdfg filename and dwdana filename, the filenames
have the form

dwdfg_filename = "dwdFG_R<nroot>B<jlev>_DOM<idom>.nc"

dwdana_filename = "dwdana_R<nroot>B<jlev>_DOM<idom>.nc"

This means, e. g., that the first guess filename begins with “dwdFG ”, supplemented by
the grid resolution Rx Byy and the domain number DOMii . Filenames are treated case
sensitive.1

By changing the above setting, the user has full flexibility with respect to the
filename structure. The following keywords are allowed:

<path> model base directory
(namelist parameter model base dir, namelist master nml)

<nroot> grid root division Rx (single digit)
<nroot0> grid root division Rx (two digits)
<jlev> grid bisection level Byy (two digits)
<idom> domain number (two digits).

4.2.3. Starting from DWD Analysis with IAU

As described in Section 2.3.1, incremental analysis update is a means to reduce the initial
noise which typically results from small scale non-balanced modes in the analysis data
set. Given that a valid DWD analysis data set for incremental update is available (see
Section 2.3.1), starting from DWD analysis data is basically controlled by the following
namelist parameters:

1More precisely this behaviour depends on the file system: UNIX-like file systems are case sensitive, but
the HFS+ Mac file system (usually) is not.
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init mode = 5 (namelist initicon nml, integer value)
To start from DWD analysis data with IAU, the initialization mode must be set to 5.

ICON again expects two input files: One containing the ICON first guess, which typically
consists of a 1.5 h forecast taken from the assimilation cycle (as opposed to a 3 h forecast
used for the non-IAU case). The second one contains the analysis fields (mostly increments)
produced by the assimilation process.

dwdfg filename (namelist initicon nml, string parameter)
Filename(s) of the DWD first guess input file(s) for each domain. See Section 4.2.2
for an explanation of the filename structure.

dwdana filename (namelist initicon nml, string parameter)
Filename(s) of the DWD analysis input file(s) for each domain. See Section 4.2.2 for
an explanation of the filename structure.

The behaviour of the IAU procedure is controlled via the namelist switches dt iau and
dt shift:

dt iau =10800 (namelist initicon nml, real value)
Time interval (in s) during which the IAU procedure (i.e. dribbling of analysis in-
crements) is performed.

dt shift =-5400 (namelist initicon nml, real value)
Time (in s) by which the model start is shifted ahead of the nominal model start
date given by ini datetime string. Typically dt shift is set to −0.5 dt iau such
that dribbling of the analysis increments is centered around ini datetime string.

As explained in Section 2.3.1 and depicted in Figure 4.2, you have to make sure that the
first guess is shifted ahead in time by −0.5 dt iau w.r.t. the analysis. The model start
time ini datetime string must match the validity time of the analysis.

4.2.4. Starting from IFS Analysis

No filtering procedure is currently available when starting off from interpolated IFS anal-
ysis data. The model just reads in the initial data from a single file and starts the forecast.

init mode = 2 (namelist initicon nml, integer value)
To start from interpolated IFS analysis data, the initialization mode must be set
to 2.

ifs2icon filename (namelist initicon nml, string parameter)
ICON expects a single file per domain from which interpolated IFS analysis can
be read. With this parameter, the filename can be specified. Note that for this
initialization mode only input data in NetCDF format are supported. Similar to
the namelist parameters dwdfg filename and dwdana filename, which have been
explained above in Section 4.2.2, the filenames have the form

ifs2icon_filename = "ifs2icon_RnrootBjlev_DOMidom.nc"

Remember to make sure that the model start time given by ini datetime string matches
the validity date of the analysis input file.
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Figure 4.2.: Schematic illustrating typical settings for a global ICON forecast run starting
from a DWD analysis with IAU at 00UTC. IAU is performed over a 3 h time
interval (dt iau), with the model start being shifted ahead of the nominal
start date by 1.5 h (dt shift).

4.3. Settings for the Model Output

Model output is enabled via the namelist run nml with the main switch output. By setting
this string parameter to the value "nml", the output files and the fields requested for output
can be specified. In the following, this procedure will be described in more detail.

In general the user has to specify five individual quantities to generate output of the model.
These are:

a) The time interval between two model outputs.

b) The name of the output file.

c) The name(s) of the variable(s) to output.

d) The type of the vertical output grid (e. g. pressure levels or model levels).

e) The type of the horizontal output grid (i. e. ICON grid or geographical coordinates).

All of these parameters are set in the namelist output nml. Multiple instances of this
namelist may be specified for a single model run, where each output nml creates a separate
output file. The options d) and e) require an interpolation step. They will be discussed in
more detail in Section 6.3.

In the following, we give a short explanation for the most important namelist parameters:
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output filename (namelist output nml, string parameter)
This namelist parameter defines a prefix for the output filename (which may include
the directory path). The domain number, level type, file number and file format
extension will be appended to this prefix.

output bounds (namelist output nml, three floating-point values)
This namelist parameter defines the start time and the end time for the model
output, and the interval between two consecutive write events. The three values
for this parameter are separated by commas, and, by default, they are specified in
seconds.

ml varlist (namelist output nml, character string list)
This parameter is a comma-separated list of variables or variable groups (the latter
are denoted by the prefix “group:”). The ml varlist corresponds to model levels,
but all 2D variables (for example surface variables) are specified in the ml varlist

as well. It is important to note that the variable names follow an ICON-internal
nomenclature. The temperature field, for example, is denoted by the character string
“temp”. A list of available output fields is provided in Appendix C.

Users can also specify the variable names in a different naming scheme, for exam-
ple “T” instead of “temp”. To this end, a translation table (a two-column ASCII
file) can be provided via the parameter output nml dict in the namelist io nml.
An example for such a dictionary file can be found in the source code directory:
run/dict.output.dwd.

m levels (namelist output nml, floating point values, comma-sep.)
Comma separated list of model levels for which the variables and groups specified in
the above mentioned variable list should be written to output. Level ordering does
not matter.

dom (namelist output nml, integer values, comma-sep.)
Related to setups with nests, i.e. multiple domains: Domains for which this namelist
is used. If not specified (or specified as -1), this namelist will be used for all domains.

remap (namelist output nml, integer value: 0/1)
This namelist parameter is related to the horizontal interpolation of the output to
regular grids, see Section 6.3.

filetype (namelist output nml, integer value: 2/4)
ICON offers the possibility to produce output either in NetCDF or GRIB2 format.
This can be chosen by the namelist parameter filetype of the namelist output nml.
Here, the value filetype=2 denotes the GRIB2 output, while the value filetype=4

denotes the NetCDF file format.

As it has been stated before, each output nml creates a separate output file. To be more
precise, there are a couple of exceptions to this rule. First, multiple time steps can be
stored in a single output file, but they may also be split up over a sequence of files (with a
corresponding index in the filename), cf. the namelist parameter steps per file. Second,
an instance of output nml may also create more than one output file, if grid nests have been
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enabled in the model run together with the global model grid, cf. the namelist parameter
dom. In this case, each model domain is written to a separate output file. Finally, model
output is often written on different vertical axes, e. g. on model levels and on pressure
levels. The specification of this output then differs only in the settings for the vertical
interpolation. Therefore it is often convenient to specifiy the vertical interpolation in the
same output nml as the model level output, which again leads to multiple output files.

4.4. Parallelization Aspects

As mentioned in the introduction, ICON can use two different mechanisms for parallel
execution:

a) OpenMP – Multiple threads are run in a single process and share the memory of a
single machine.
An implementation of OpenMP ships with your Fortran compiler. OpenMP-parallel
execution therefore does not require the installation of additional libraries.

b) MPI – Multiple ICON processes (processing elements, PEs) are started simulta-
neously and communicate by passing messages over the network. Each process is
assigned a part of the grid to process.

These mechanisms are not mutually exclusive. A hybrid approach is also possible: Mul-
tiple ICON processes are started, each of which starts multiple threads. The processes
communicate using MPI. The threads communicate using OpenMP.

4.4.1. Settings for Parallel Execution

Several settings must be adjusted to control the parallel execution:

Namelist parallel nml

First, we focus on some namelist settings for the distributed-memory MPI run.
Processors are divided into

Worker PEs this is the majority of MPI tasks, doing the actual work
I/O PEs dedicated I/O server tasks
Restart PEs for asynchronous restart writing (see Section 6.4)
Prefetch PE for asynchronous read-in of boundary data in limited area mode

(see Section 5.1.5)
Test PE MPI task for verification of MPI parallelization (debug option)

The configuration settings are defined in the namelist parallel nml. To specify the
number of output processes, set the namelist parameter num io procs to a value
larger than 0, which reserves a number of processors for output. While writing, the
remaining processors continuously carry out calculations. Conversely, setting this
option to 0 forces the worker PEs to wait until output is finished. For the writing
of the restart checkpoints (see Section 6.4), there exists a corresponding namelist
parameter num restart procs.
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During start-up the model prints out a summary of the processor partitioning. This
is often helpful to identify performance bottlenecks. First of all, the model log output
contains a one-line status message:

Number of procs for

test: xxx, work: xxx, I/O: xxx, Restart: xxx, Prefetching: xxx

Afterwards, the sizes of grid partitions for each MPI process are summarized as
follows:

Number of compute PEs used for this grid: 118

# prognostic cells: max/min/avg xxx xxx xxx

Given the case that the partitioning process would fail, these (and the subsequently
printed) values would be grossly out of balance.

Batch queuing system
Apart from the namelist settings, the user has to specify the computational resources
that are requested from the compute cluster. In addition to the number of MPI tasks
and OpenMP threads, here the user has to set the number of cluster-connected nodes.

Increasing the number of nodes allows to use more computational resources, since a
single compute node comprises only a limited number of PEs and OpenMP threads.
On the other hand, off-node communication is usually more expensive in terms of
runtime performance.

When using the qsub command to submit a script file, the queuing system PBSPro
allows for specification of options at the beginning of the file prefaced by the
#PBS delimiter followed by PBS commands (see also the comments in Appendix A).
For example, to run the executable in hybrid mode on 12 nodes with 4 OpenMP
threads/processes, set

#PBS -q xc_norm_h

#PBS -l select=12:ompthreads=4

#PBS -l place=scatter

#PBS -l walltime=01:00:00

#PBS -j oe

In more detail, the PBS keywords have the following meaning:

#PBS -q xc norm h To put a job to the (Haswell) compute nodes of the
XC 40.

#PBS -l select=$NODES To specify the number of compute nodes.

#PBS -l place=pack If only one compute node is used.

#PBS -l place=scatter If more than one compute node are used.

#PBS -l walltime=... This directive specifies the maximum wall-clock time
(real time) that a job should take.

#PBS -j oe To put standard error and standard out to the same
device.

#PBS -N To give a special name to the job.
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Application launch with aprun

Finally the user has to set the correct options for the application launcher, which
is the aprun command on the Cray XC 40 platform. Here we have the following
syntax:

aprun -n total number of MPI tasks

-N number of MPI tasks/node

-d number of threads/MPI task

-j hyperthreading (enabled=2)

-m memory/task

command

Best practice for parallel setups (note for advanced users): ICON employs both
distributed memory parallelization and shared memory parallelization, i.e. a “hybrid
parallelization”. Only the former type actually performs a decomposition of the
domain data, using the de-facto standard MPI. The shared memory parallelization,
on the other hand, uses OpenMP directives in the source code. In fact, nearly all DO
loops that iterate over grid cells are preceded by OpenMP directives. For reasons of
cache efficiency the DO loops over grid cells, edges, and vertices are organized in two
nested loops: “jb loops” and “jc loops”1. Here the outer loop (“jb”) is parallelized
with OpenMP.

There is no straight-forward way to determine the optimal hybrid setup, except for
the extreme cases: If only a single node is used, then the global memory facilitates
a pure OpenMP parallelization. Usually, this setup is only feasible for very small
simulations. If, on the other hand, each node constitutes a single-core system, a
multi-threaded (OpenMP) run would not make much sense, since multiple threads
would interfere on this single core. A pure MPI setup would be the best choice then.

In all of the other cases, the parallelization setup depends on the hardware platform
and on the simulation size. In practice, 4 threads/MPI task have proven to be a good
choice on Intel-based systems. This should be combined with the hyperthreading
feature, i.e. a feature of the x86 architecture where one physical core behaves like
two virtual cores.

Starting from this number of threads per task the total number of MPI tasks is
then chosen such that each node is used to an equal extent and the desired time-
to-solution is attained – in operational runs at DWD this is ∼ 1h. In general one
should take care of the fact that the number of OpenMP threads evenly divides
the number of cores per CPU socket, otherwise intersocket communication might
impede the performance.

Finally, there is one special case: If an ICON run turns out to consume an extraor-
dinarily large amount of memory (which should not be the case for a model with
a decent memory scaling), then the user can resort to “investing” more OpenMP
threads than it is necessary for the runtime performance. Doing so, each MPI pro-
cess would have more memory at its disposal.

1This implementation method is known as loop tiling, see also Section 5.3.
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4.4.2. Bit-Reproducibility

Bit-reproducibility refers to the feature that running the same binary multiple times should
ideally result in bitwise identical results. Depending on the compiler and the compiler
flags used this is not always true if the number of MPI tasks and/or OpenMP threads
is changed in between. Usually compilers provide options for creating a binary that of-
fers bit-reproducibility, however this is often payed dearly by strong performance losses.
With the Cray compiler, it is however possible to generate an ICON binary offering bit-
reproducibility with only little performance loss. The ICON binary used in this workshop
gives bit-reproducible results (will be checked in Exercise 4.7).

Bit-reproducibility is generally an indispensable feature for debugging. It is helpful

• for checking the MPI/OpenMP parallelization of the code. If the ICON code does
not give bit-identical results when running the same configuration multiple times,
this is a strong hint for an OpenMP race condition. If the results change only when
changing the processor configuration, this is a hint for a MPI parallelization bug.

• for checking the correctness of new code that is supposed not to change the results.

4.4.3. Basic Performance Measurement

The ICON code contains internal routines for performance logging for different parts
(setup, physics, dynamics, I/O) of the code. These may help to identify performance
bottlenecks. ICON performance logging provides timers via the two namelist parameters
ltimer and timers level (namelist run nml).

With the following settings in the namelist run nml,

ltimer = .TRUE.

timers_level = 10

the user gets a sufficiently detailed output of wall clock measurements for different parts
of the code:

--------------------------- ------- ------------- -------------

name # calls total min (s) total max (s)

--------------------------- ------- ------------- -------------

total 118 ... 272.564 272.637

L integrate_nh 247800 ... 255.208 270.596

L nh_solve 247800 ... 111.052 127.559

...

L nh_hdiff 49678 ... 4.618 6.894

L transport 49560 ... 33.409 35.791

L adv_horiz 49560 ... 22.849 24.663

L back_traj 148680 ... 2.222 2.601

L adv_vert 49560 ... 6.280 7.698

L prep_tracer 49560 ... 0.113 1.588

L nesting 49560 ... 0.000 0.001

L nesting.bdy_interp 49560 ... 0.000 0.000
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exch_data 2570040 ... 18.931 73.496

L exch_data.wait 2570040 ... 14.500 70.128

global_sum 50740 ... 0.012 0.026

ordglb_sum 61596 ... 0.441 5.243

wrt_output 1770 ... 0.211 0.266

physics 49678 ... 103.107 104.759

L nwp_radiation 10030 ... 40.402 42.985

L radiation 220674 ... 31.845 34.963

...

Note that some of the internal performance timers are nested, e.g. the timer log for
radiation is contained in physics, indicated by the “L” symbol. For correct interpreta-
tion of the timing output and computation of partial sums one has to take this hierarchy
into account.

Note for advanced users: The built-in timer output is rather non-intrusive. It is
therefore advisable to have it enabled also in operational runs.

4.5. Exercises

In this exercise you will learn how to start ICON from DWD analysis data and how to
perform a multi-day forecast with 40 km resolution globally and 20 km resolution over
Europe. Another practical aim of this exercise is to create raw data for driving a limited
area ICON run. Further use of this data will be made in Ex. 5.1.

Job submission to the Cray XC 40 can be performed on the Linux cluster lce. Note,
however, that visualization tools (CDO, NCL, ncview) are only available on
the Linux cluster lce!

Input Data

Note:
The exercises in this section require a number of grid files, external parameters
and input data. This data is already available in the directory case2/input. Their
creation process is explained in Ex. 2.1 and 2.2 (see p. 32).

On default, ICON expects the input data to be located in the experiment directory (termed
$EXPDIR in the run scripts). The run script creates symbolic links in the experiment
directory, which point to the input files. Table 4.1 provides a list of all input files in
the input directory (left column) together with the corresponding symbolic links in the
experiment directory (right column). Note that, in general, the original names differ from
the symbolic link names which need to match the default filename structure expected by
the model.
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original name symbolic link name

grid files

icon grid 0023 R02B05 R[-grfinfo].nc −→ iconR2B05 DOM00[-grfinfo].nc

icon grid 0024 R02B06 G[-grfinfo].nc −→ iconR2B06 DOM01[-grfinfo].nc

icon grid 0028 R02B07 N02[-grfinfo].nc −→ iconR2B07 DOM02[-grfinfo].nc

extpar files

icon extpar 0024 R02B06 G 20150805 tiles.nc −→ extpar DOM01.nc

icon extpar 0028 R02B07 N02 20150805 tiles.nc −→ extpar DOM02.nc

first guess/analysis files

igfff20170111210000-0130R.grb −→ dwdFG R2B06 DOM01.grb

iefff20170111210000-0130R.grb −→ dwdFG R2B07 DOM02.grb

igaf20170112000000R.grb −→ dwdANA R2B06 DOM01.grb

ieaf20170112000000R.grb −→ dwdANA R2B07 DOM02.grb

Table 4.1.: List of all input files required for Exercises 4.1–4.5. The left column shows the
original filenames, as found in the input directory case2/input, whereas the
right column shows the corresponding symbolic link names in the experiment
directory. With the symbolic links we avoid absolute path settings in the ICON
namelists.

Starting a Global ICON Forecast from DWD Analysis

In this exercise you will learn how to run ICON in real data mode.

EX 4.1

Open the ICON run script case2/run ICON R02B06 dwdini and prepare the script
for running a global 72 hour forecast on an R2B06 grid with 40 km horizontal
resolution without nest. The start date is

2017-01-12T00:00:00 , i.e. January 12, 2017.

Basic settings

• Fill in the missing namelist parameters ini datetime string,
end datetime string, ltestcase, ldynamics, ltransport, iforcing, and
itopo for real data runs (see Section 4.2.1).

• For better runtime performance, switch on asynchronous output by setting the
number of dedicated I/O processors (num io procs) to a value larger than 0
(e. g. 1). See Section 4.4.1 for more details on the asynchronous output module.

Specifying the input data

• The grid file(s) to be used are already specified in the run script (see
dynamics grid filename, radiation grid filename).

• Due to the appropriate choice of the symbolic links in the experiment directory
(see Table 4.1), ICON is able to locate the first guess and analysis data sets
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automatically without specifying the namelist variables dwdfg filename,
dwdana filename.

However, both are given in the run script for reference, using the keyword
nomenclature mentioned in Section 4.2.2.

Have a look at these settings and try to understand how these keywords work.

Which of the following filenames
would be accepted by the ICON
model?

dwdFG R2B06.grb

dwdFG R2B6 DOM01.grb

dwdFG R9B02 DOM02.grb

dwdfg R2B06 DOM01.grb

• Specify the name of the external parameter file (extpar filename).
Remember to make use of the symbolic link name! Instead of specifying the
full name, try to make use of the keyword idom.

Settings for the Incremental Analysis Update (IAU) procedure

• Choose the appropriate initialization mode init mode for starting the model
from DWD analysis with IAU (see Section 4.2.3).

• The Incremental Analysis Update shall be performed for a 3 h time interval,
centered around the nominal start date. Please choose dt iau and dt shift

appropriately. Revisit your settings by comparing them with Figure 4.2.

Running the model and inspecting the output

• Submit the job to the Cray XC 40.

• After the job has finished, inspect the model output:

– Take a look at the output files in case2/output. You should find two files
named NWP ... Use cdo sinfov to identify the

time interval between two outputs – Answer: h

total time interval for which output is written – Answer: h

type of vertical output grid (ML, PL, HL) – Answer:

– one file contains output on the native ICON grid, the other one output on
a regular lat/lon grid. Use cdo sinfov to identify which file is which.

– Answer: native

– Answer: lat/lon

– Visualize the 2 m temperature, integrated water vapour, gusts at 10 m,
and total precipitation using the ncview utility. If you like, you can look
into other fields as well.
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Timestepping

This exercise focuses on aspects of the ICON time-stepping scheme, explained in Sec-
tion 4.1.

EX 4.2

• Compute the dynamics time step ∆τ from the specification of the physics time
step ∆t (dtime) and the number of dynamics substeps ndyn substeps.

– Answer: ∆τ = s

• Take a look at Equation (4.1) and calculate an estimate for the maximum
dynamic time step which is allowed for the horizontal resolution at hand.

– Answer: ∆τmax = s

Now compare this to the time step used: Did we make a reasonable choice?

Parallelization and Run Time Performance

In this exercise you will learn how to specify the details of the parallel execution. We will
use the ICON timer module for basic performance measuring.

EX 4.3

Performance assessment using the timer output:

• Open your run script from the previous Exercise 4.1 and enable the ICON
routines for performance logging (timers). To do so, follow the instructions in
Section 4.4.3.

• Repeat the model run.

• At the end of the model run, a log file is created. It can be found in your base
directory case2. Scroll to the end of this file. You should find wall clock timer
output comparable to that listed in Section 4.4.3. Try to identify

the total run time – Answer: s

the time needed by the radiation module – Answer: s

EX 4.4

Changing the number of MPI tasks: In case your computational resources are
sufficient, one possibility to speed up your model run is to increase the number of
MPI tasks.

• Create a copy of your run script run ICON R02B06 dwdini named
run ICON R02B06 dwdini fast. In order to avoid overwriting your old results,
replace the output directory name (EXPDIR) by exp02 dwdini fast.
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• Double the total number of MPI tasks compared to your previous job and
re-submit. In more detail, do the following:

– Your old script (run ICON R02B06 dwdini) ran the executable in hybrid
mode on 25 nodes using 12 MPI tasks/node and 4 OpenMP threads/MPI
task with hyperthreading enabled.

– Your new script (run ICON R02B06 dwdini fast) should run the
executable in hybrid mode on 50 nodes using 12 MPI tasks/node and 4
OpenMP threads/MPI task with hyperthreading enabled.

You need to adjust both the PBS settings and the aprun command. See
Section 4.4.3 for additional help.

• Compute the speedup that you gained from doubling the number of MPI tasks.

– Compare the timer output of the dynamical core, nh solve, and the
transport module, transport, with the timer output of your previous run.

nh solve

25 nodes
nh solve

50 nodes

s s

transport

25 nodes
transport

50 nodes

s s

What do you think is a more sensible measure of the effective cost: total
min rank or total max rank?

– Answer:

– Which speedup did you achieve and what would you expect from
“theory”?

– Answer: Speedup achieved = T25nodes
T50nodes

=

– Answer: Speedup expected =

Writing Output for Driving a Limited Area Simulation

In this exercise you will learn about some of the output capabilities of ICON. We will set
up a new output namelist and generate a data set which enables us to drive a limited area
version of ICON in Chapter 5.

EX 4.5

In order to achieve a somewhat higher spatial resolution at acceptable costs, we will
switch on a two-way nested region over Europe with a horizontal resolution of
20 km (see Figure 4.3):

• Create a copy of your run script run ICON R02B06 dwdini named
run ICON R02B06N7 dwdini. Alternatively, you may create a copy of the
reference version reference/case2/run ICON R02B06 dwdini.
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R2B06

R2B07

Figure 4.3.: Computational grid with a two-way nested region over Europe (yellow shad-
ing). The outline of the COSMO-EU domain (formerly used operationally by
DWD) is shown in red for comparison.

• Activate the nest, by extending the list of horizontal grids to be used
(dynamics grid filename) and the parent grid IDs
dynamics parent grid id (grid nml).

• In order to save some computational resources, the nested region should have a
reduced model top height and comprise only the lowermost 60 vertical levels of
the global domain (instead of 90 levels). Please extend num lev (run nml)
accordingly.

Adding a new output namelist:

• The run script contains two commented-out output namelists. Activate the
namelists and fill in the missing parameters. See Section 4.3 for additional
details regarding output namelists. Output should be written

– in GRIB2 format

– for the EU-nest only

– 2-hourly from the start until 48 hours forecast time

– with one output step per file

– on the native (triangular) grid

– into the subdirectory “lam forcing” of your output directory
exp02 dwdini, using the filename prefix “forcing”. If the subdirectory
does not exist, please create.

– containing model level output for
U, V, W, THETA V, DEN, QV, QC, QI, QR, QS, HHL.
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• Submit the job to the Cray XC 40.

Check the correctness of your output files:

• You should find 25 files in your output directory “lam forcing”. Apply the
command cdo sinfov data-file.grb > data-file.sinfov to the last file. Compare
with the reference output in Table 4.2 to see whether your output namelist is
correct.

Table 4.2.: Reference output for Ex. 4.5. Structure and content of file
forcing DOM02 20170114T000000Z.grb

File format : GRIB2

-1 : Institut Source Ttype Levels Num Points Num Dtype : Parameter name

1 : DWD unknown instant 60 1 75948 1 P16 : U

2 : DWD unknown instant 60 1 75948 1 P16 : V

3 : DWD unknown instant 61 2 75948 1 P16 : W

4 : DWD unknown instant 60 1 75948 1 P16 : THETA_V

5 : DWD unknown instant 60 1 75948 1 P16 : DEN

6 : DWD unknown instant 60 1 75948 1 P16 : QV

7 : DWD unknown instant 60 1 75948 1 P16 : QC

8 : DWD unknown instant 60 1 75948 1 P16 : QI

9 : DWD unknown instant 60 1 75948 1 P16 : QR

10 : DWD unknown instant 60 1 75948 1 P16 : QS

11 : DWD unknown instant 61 3 75948 1 P16 : HHL

Grid coordinates :

1 : unstructured : points=75948

grid : number=28 position=1

uuid : 982dcc6e-fe2e-11e4-9128-0b03674e713a

Vertical coordinates :

1 : generalized_height : levels=60

height : 1.5 to 60.5 by 1

bounds : 1-2 to 60-61 by 1

zaxis : number = 4

uuid : 5a98830d-0338-110a-7fd6-d9099a353200

2 : generalized_height : levels=61

height : 1 to 61 by 1

zaxis : number = 4

uuid : 5a98830d-0338-110a-7fd6-d9099a353200

3 : generalized_height : levels=61

height : 0.5 to 30.5 by 0.5

bounds : 1-0 to 61-0 by 0.5

zaxis : number = 4

uuid : 5a98830d-0338-110a-7fd6-d9099a353200

Time coordinate : 1 step

RefTime = 2017-01-12 00:00:00 Units = minutes Calendar = proleptic_gregorian

YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss

2017-01-14 00:00:00

CHAPTER 4. REAL DATA TEST CASES ICON Model Tutorial



4.5 Exercises 69

Optional: A Deeper Look into Spin-Up Effects

Depending on the data set used to initialize the model, spin up effects may become visible
during the first few hours of a forecast. This is especially true, if third party (i.e. non-
native) analysis data sets are used. Here we will have a look into the spin up behaviour
when ICON is started from native vs. non-native analysis. As an example for a popular
non-native analysis, we will choose data from the IFS.

EX 4.6

• Run the NCL script case2/water budget.ncl, to get a deeper insight into the
model’s spin up properties and water budget when started from DWD analysis.
The script generates time series of vertically integrated water vapour tqv and
condensate tqx from the model level output in case2/output/exp02 dwdini.

Compare the results to Figure 4.4 which shows the corresponding results when
ICON is started from IFS analysis.

Which analysis data set leads
to an increased spin up/down
in this particular case?

native analysis (DWD)

non-native analysis (IFS)

The additional NCL plots will give you some insight into the global
atmospheric water budget

dQt

dt
= P − E +R ,

where Qt is the vertically integrated atmospheric water content and dQt/dt is
the rate of change over time. P is the amount of total precipitation, E is the
total evaporation, and R is a residuum. Is the budget closed (i.e. is R = 0 in
your model run)?

Optional: Checking for Bit-Reproducibility

EX 4.7

• Compare the model level output of run ICON R02B06 ifsini with the output
that was produced by your modified script run ICON R02B06 ifsini fast.
You can use cdo infov data-file.nc for getting information about the contents
of your output file. You should dump this information into text files,

cdo infov data-file.nc > data-file.infov

so that you can compare them later on. Due to the limited number of digits
printed by CDO, this is no check for bit-reproducibility in a strict
mathematical sense, however experience showed that cdo infov is very
reliable in revealing reproducibility issues.

Hint: For a convenient comparison of ASCII files you may use the tkdiff

utility.
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Figure 4.4.: Time series of area averaged column integrated specific moisture 〈tqv〉 (top)
and condensate classes 〈tqx〉 (bottom) for a 7-day forecast started from IFS
analysis fields. Start date was 2017-01-12T00:00:00. A spin up in 〈tqv〉 and
initial adjustments in 〈tqx〉 are clearly visible.
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5. Limited Area Mode

The most important first: Running the limited area (regional) mode of ICON does not
require a separate, fundamentally different executable. Instead, ICON-LAM is quite similar
to the other model components discussed so far: It is easily enabled by a top-level namelist
switch

Namelist grid nml: l limited area = .TRUE.

Other namelist settings must be added, of course, to make a proper ICON-LAM setup.
This chapter explains some of the details.

Chapter Layout. Some of the preprocessing aspects regarding the regional mode have
already been discussed in Section 2.3.4. Based on these prerequisites the exercises in this
chapter will explain how to actually set up and run limited area simulations.

Apart from these technical adjustments, a more detailed understanding of ICON’s physics-
dynamics coupling is a necessary starting point for actually modifying and extending the
ICON model. We will provide information on this more general subject in the following
sections as well. Finally, the reader will be able to implement own model diagnostics.

5.1. Running ICON-LAM

This section provides technical details on the limited area mode, in particular on how to
control the read-in of boundary data.

5.1.1. Limited Area Mode vs. Nested Setups

In Section 3.3.2 (see p. 43) the nesting capability of ICON has been explained. Technically,
the same computational grids may be used either for the limited area mode or the nested
mode of ICON1. Furthermore, both ICON modes aim at simulations with finer grid spacing
and smaller scales. They therefore choose a comparable set of options out of the portfolio
of available physical parameterizations.

However, there exist some differences between the regional and the one-way nested mode:

1Here, we do not take the reduced radiation grid feature into account, see Section 6.2. This serves to
simplify the discussion at this point.
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• ICON-LAM is driven by external boundary data – that’s an obvious difference!
During the simulation time loop, the boundary conditions are updated periodically
by reading input files. Between two lateral boundary data samples the boundary
data is linearly interpolated.

• Updates happen (significantly) less frequently compared to one-way nesting.

• The driving model and the limited area model may run on different computer sites.

• ICON-LAM allows for a more flexible choice of vertical levels: Nested domains may
differ from the global, “driving” grid only in terms of the top level height, but vertical
layers between the nested and the parent domain must match. In contrast to that
the limited area mode performs a vertical interpolation of its input data. This is the
default namelist parameter setting itype latbc=1 in the namelist limarea nml. The
level number and the level heights may therefore be chosen independently.

• ICON-LAM allows for a more flexible choice of the horizontal resolution. While for
nested setups the increase in horizontal resolution per nesting level is constrained to a
factor of 2, the resolution of the limited-area domain can be freely selected. However,
resolution jumps much larger than a factor of ∼ 5 between the forcing data resolution
and the target resolution and should be avoided, since it will negatively impact the
forecast quality.

5.1.2. Nudging in the Boundary Zone

Within the boundary zone, the driving boundary data is partly prescribed and partly
combined with the prognostic fields of the regional domain by taking a weighted mean of
the two.

Interpolation Nudging

domain
boundary

domain
interior

grf_bdywidth=4 nudge_zone_width=8

On the outermost four cell rows (grf bdywidth) the boundary data are simply interpo-
lated onto the domain. In the adjacent nudging zone the prognostic fields are nudged
towards the driving boundary data. The nudging weights are reduced with increasing dis-
tance from the boundary. The nudge zone width in terms of cell rows can be specified in
nudge zone width. It should at least comprise 8 (better 10) cell rows in order to minimize
boundary artefacts.

5.1.3. Initialization Mode

Limited area runs with ICON require new initialization modes, in addition to those de-
fined in Section 4.2.1. In these modes the read-in process will be followed by a vertical
interpolation of the input fields.
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init mode (namelist initicon nml, integer value)

init mode = 4 start limited area run from COSMO-DE data

init mode = 7 start limited area run from ICON data

nlev latbc (namelist limarea nml, integer value)
This namelist parameter specifies the number of vertical levels in the boundary data.

When we do not make use of additional analysis information, we need to set this via a
namelist option:

lread ana (namelist initicon nml, logical value)
By default, this namelist parameter is set to .TRUE.. If .FALSE., ICON is started
from first guess only and an analysis file is not required. The filename of the first
guess file is specified via the dwdfg filename namelist option, see Section 4.2.2.

Boundary data is read in regular time intervals. This is specified by the following namelist
parameter:

dtime latbc (namelist limarea nml, floating-point value)
Time difference in seconds between two consecutive boundary data sets.

5.1.4. Naming Scheme for Lateral Boundary Data

Naturally, the sequence of lateral boundary data files must satisfy a consistent naming
scheme. It is a good idea to consider this convention already during the preprocessing
steps (see Section 2.3.4).

Filenames: latbc filename, latbc path (string parameters, limarea nml)
The filenames have the following form:

"prepiconRnrootBjlev_yyyymmddhh.nc"

Here, nroot and jlev denote the grid’s root subdivision and bisection level (see Sec-
tion 2.1.1). The tokens yyyy , mm , dd , and hh must be replaced by year, month, day,
and hour. This naming scheme can even be flexibly altered via the namelist param-
eter latbc filename (namelist limarea nml), see ICON’s namelist documentation
for details.

The absolute path to the boundary data can be specified with
latbc path (string parameter, limarea nml).

Field names: latbc varnames map file (namelist limarea nml, string)
ICON supports NetCDF and GRIB2 as input format for the DWD input fields. Since
often field names that are used, e.g., in the GRIB2 input files do not coincide with
the field names that are internally used by the ICON model, an additional input
text file (dictionary file) can be provided. This two-column file translates between
the ICON variable names and the corresponding DWD GRIB2 short names.

If no latbc varnames map file is specified, then it is assumed that all required
fields can be identified in the input files by their ICON-internal names.
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Boundary grid: latbc boundary grid (namelist limarea nml, string)
As it has been explained in Section 2.3.4, the lateral boundary data is defined on an
auxiliary grid, which contains only the cells of the boundary zone.
The filename of this grid file is specified with this namelist parameter.

5.1.5. Pre-Fetching of Boundary Data (Mandatory)

Pre-fetching strives to avoid blocking of the computation due to reading of boundary
data. The term denotes the reading of files ahead of time, i.e. the next input file will be
processed simultaneously with the preceding compute steps. This avoids waiting for the
I/O processes during the time consuming process of opening, reading and closing of the
input files.

num prefetch proc = 1 (namelist parallel nml, integer value)
If this namelist option is set to 1, one MPI process will run exclusively for asyn-
chronously reading boundary data during the limited area run. This setting, i.e. the
number of prefetching processors, can be zero or one.

Enabling the prefetching mode is mandatory for the described LAM setup.

5.2. ICON Physics in a Nutshell

5.2.1. Overview

Table 5.1 contains a summary of physical parameterizations available in ICON (NWP-
mode).

5.2.2. Details of ICON’s Physics-Dynamics Coupling

For efficiency reasons, a distinction is made between so-called fast-physics processes (those
whose time scale is comparable or shorter than the model time step), and slow-physics
processes whose time scale is considered slow compared to the model time step. The
relationship between the different time steps has already been explained in Section 4.1.

Fast-physics processes are calculated at every physics time step and are treated with time
splitting (also known as sequential split) which means that (with exceptions noted be-
low) they act on an atmospheric state that has already been updated by the dynamical
core, horizontal diffusion and the tracer transport scheme. Each process then sequentially
updates the atmospheric variables and passes a new state to the subsequent parameteri-
zation.

The calling sequence is saturation adjustment → surface transfer scheme → land-surface
scheme → boundary-layer / turbulent vertical diffusion scheme → microphysics scheme,
and again saturation adjustment in order to enter the slow-physics parameterizations with
an adjusted state. The exceptions from the above-mentioned sequential splitting are the
surface transfer scheme and the land-surface scheme, which take the input at the ‘old’
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Process Scheme Settings

Radiation RRTM (Rapid Radiative Transfer Model) inwp radiation=1

Mlawer et al. (1997), Barker et al. (2003)

PSRAD inwp radiation=3

Pincus and Stevens (2013)

Wave dissipation at critical level inwp gwd=1Non-orographic
gravity wave drag

Orr et al. (2010)

Lott and Miller scheme inwp sso=1Sub-grid scale
orographic drag

Lott and Miller (1997)

Cloud cover Diagnostic PDF inwp cldcover=1

M. Köhler et al. (DWD)

All-or-nothing scheme (grid-scale clouds) inwp cldcover=5

Microphysics Single-moment scheme inwp gscp=1

Doms et al. (2011), Seifert (2008)

Double-moment scheme inwp gscp=4

Seifert and Beheng (2006)

Convection Mass-flux shallow and deep inwp convection=1

Tiedtke (1989), Bechtold et al. (2008)

Turbulent transfer Prognostic TKE (COSMO) inwp turb=1

Raschendorfer (2001)

EDMF-DUALM (Eddy-Diffusivity/Mass-Flux) inwp turb=3

Neggers et al. (2009)

3D Smagorinsky diffusion (for LES) inwp turb=5

Land Tiled TERRA inwp surface=1

Schrodin and Heise (2002)

Flake: Mironov (2008) llake=.TRUE.

Sea-ice: Mironov et al. (2012) lseaice=.TRUE.

Table 5.1.: Summary of ICON’s physics parameterizations, together with the related
namelist settings (namelist nwp phy nml). Note: Since the JSBACH compo-
nent is not available in NWP mode, it has been excluded from this list.
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Figure 5.1.: Coupling of the dynamical core and the NWP physics package. Processes
declared as fast (slow) are treated in a time-split (process-split) manner.

time level because the surface variables are not updated in the dynamical core and the
surface transfer coefficients and fluxes would be calculated from inconsistent time levels
otherwise. The coupling strategy is schematically depicted in Figure 5.1.

Slow-physics processes are treated in a parallel-split manner, which means that they are
stepped foward in time independently of each other, starting from the model state provided
by the latest fast-physics process. In ICON convection, radiation, non-orographic and
orographic gravity wave drag are considered as slow processes. Typically, these processes
are integrated with time steps longer than the (fast) physics time step. The slow-physics
time steps can be specified by the user. The resulting slow-physics tendencies ∂vn/∂t,
∂T/∂t and ∂qx/∂t with x ∈ [v, c, i] are passed to the dynamical core and remain constant
between two successive calls of the parameterization (Figure 5.1). Since ICON solves a
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prognostic equation for π rather than T , the temperature tendencies are converted into
tendencies of the Exner function, beforehand.

5.2.3. Isobaric vs. Isochoric Coupling Strategies

The physics-dynamics coupling in ICON differs from many existing atmospheric models
in that it is performed at constant density (volume) rather than constant pressure. This is
related to the fact that the total air density ρ is one of the prognostic variables, whereas
pressure is only diagnosed for parameterizations needing pressure as input variable. Thus,
it is natural to keep ρ constant in the physics-dynamics interface. As a consequence,
heating rates arising from latent heat release or radiative flux divergences have to be con-
verted into temperature changes using cv, the specific heat capacity at constant volume of
moist air. Some physics parameterizations inherited from hydrostatic models, in which the
physics-dynamics coupling always assumes constant pressure, therefore had to be adapted
appropriately.

Moreover, it is important to note that the diagnosed pressure entering into a variety of
parameterizations is a hydrostatically integrated pressure rather than a nonhydrostatic
pressure derived directly from the prognostic model variables2. This is motivated by the
fact that the pressure is generally used in physics schemes to calculate the air mass repre-
sented by a model layer, and necessitated by the fact that sound waves generated by the
saturation adjustment can lead to a local pressure increase with height in very extreme
cases, particularly between the lowest and the second lowest model level.

Another important aspect is related to the fact that physics parameterizations traditionally
work on mass points (except for three-dimensional turbulence schemes). While the conver-
sion between different sets of thermodynamic variables is reversible except for numerical
truncation errors, the interpolation between velocity points and mass points potentially
induces errors. To minimize them, the velocity increments, rather than the full velocities,
coming from the turbulence scheme are interpolated back to the velocity points and then
added to the prognostic variable vn.

5.2.4. Cloud Microphysics

In the exercises at the end of this chapter, we will investigate ICON’s physical parame-
terizations by means of a custom diagnostic quantity. We restrict ourselves to the cloud
microphysics parameterization, where some additional background information will be of
interest:

Microphysical schemes provide a closed set of equations to calculate the formation and
evolution of condensed water in the atmosphere. The most simple schemes predict only the
specific mass content of certain hydrometeor categories like cloud water, rain water, cloud
ice and snow. This is often adequate, because it is sufficient to describe the hydrological
cycle and the surface rain rate, which is the vertical flux of the mass content. Microphysical
schemes of this category are called single-moment schemes.

2Note that the (surface) pressure available for output is as well the hydrostatically integrated pressure
rather than a nonhydrostatic pressure derived directly from the prognostic model variables.
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In ICON two single-moment schemes are available, one that predicts the categories cloud
water, rain water, cloud ice and snow (inwp gscp=1 in the namelist nwp phy nml), and one
that predicts in addition also a graupel category (inwp gscp=2). Graupel forms through
the collision of ice or snow particles with supercooled liquid drops, a process called riming.

Most microphysical processes depend strongly on particle size and although the mean size
is usually correlated with mass content this is not always the case. Schemes that predict
also the number concentrations have the advantage that they provide a size information,
which is independent from the mass content. Such schemes are called double-moment
schemes, because both, mass content and number concentration, are statistical moments
of the particles size distribution.

ICON does also provide a double-moment microphysics scheme (inwp gscp=4), which
predicts the specific mass and number concentrations of cloud water, rain water, cloud
ice, snow, graupel and hail. This scheme is most suitable at convection-permitting or
convection-resolving scales, i.e., mesh sizes of 3 km and finer. Only on such fine meshes
the dynamics is able to resolve the convective updrafts in which graupel and hail form.
On coarser grids the use of the double-moment scheme is not recommended.

To predict the evolution of the number concentrations the double-moment scheme includes
various parameterizations of nucleation processes and all relevant microphysical interac-
tions between these hydrometeor categories. Currently all choices regarding, e.g., cloud
condensation and ice nuclei, particle geometries and fall speeds etc. have to be set in the
code itself and can not be chosen via the ICON namelist.

5.3. Implementing Own Diagnostics

A thorough description of how to modify the ICON model and implement one’s own
diagnostics would certainly be a chapter in its own right. Moreover, its scope would not be
limited to LAM applications. Here, we try to keep things as simple and short as possible
with a view to the subsequent exercises.

Adding new fields. ICON keeps so-called variable lists of its prognostic and diagnostic
fields. This global registry eases the task of memory (de-)allocation and organizes the
field’s meta-data, e.g., its dimensions, description and unit. The basic call for registering
a new variable is the add var command (module mo var list). Its list of arguments is
rather lengthy and we will discuss them step by step.

First, we need an appropriate variable list to which we can append our new variable. For
the sake of simplicity, we choose an existing diagnostic variable list, defined in the module
mo nonhydro state:

p_diag_list => p_nh_state_lists(domain)%diag_list

The corresponding type definition can be found in the module mo nonhydro types. There,
in the derived data type TYPE(t nh diag), we place a 2D variable pointer

REAL(wp), POINTER :: newfield(:,:)
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which we can afterwards access as p nh state(domain)%diag%newfield.

Note that we did not allocate the variable so far.

Each ICON variable must be accompanied by approriate meta-data. In this example we
need to initialize GRIB and NetCDF variable descriptors for a variable located in the cell
circumcenters (mass points). As above we have omitted the necessary USE statements to
keep this presentation as short as possible:

cf_desc = t_cf_var(’newfield’, unit, long name, DATATYPE_FLT32)

grib2_desc = grib2_var(discipline, parameterCategory, parameterNumber, &

DATATYPE_PACK16, GRID_UNSTRUCTURED, GRID_CELL)

The dimensions of a 2D field will be explained below. Here we take them as given:

shape2d_c = (/ nproma, nblks_c /)

Furthermore, it is often necessary to reset accumulated quantities in regular intervals.
This can be achieved by

action_list = actions(new_action(ACTION_RESET,interval))

For example, by setting interval = "PT06H", the respective field is reset every 6 hours.

Now, with the essential ingredients at hand, we define our new field by the following call.
We will place it at the very end of the subroutine new nh state diag list in the module
mo nonhydro state.

CALL add_var( p_diag_list, ’newfield’, &

p_nh_state(domain)%diag%newfield, &

GRID_UNSTRUCTURED_CELL, ZA_HYBRID, &

cf_desc, grib2_desc, &

action_list=actions(new_action(ACTION_RESET,interval)), &

ldims=shape2d_c, lrestart=.FALSE. )

From now on the new field can be specified in the output namelists that were described
in Section 4.3:

&output_nml

...

ml_varlist = ’newfield’

/

Looping over the grid points. Of course, the newly created field ’newfield’ still needs
to be filled with values and the dimensions of the 2D field have not yet been explained.
For reasons of cache efficiency nearly all DO loops that iterate over grid cells are organized
in two nested loops: “jb loops” and “jc loops”. Here the outer loop (“jb”) is parallelized
with OpenMP and limited by the cell block number nblks c. The innermost loop iterates
between 1 and nproma.

Note: Three-dimensional fields have an additional dimension for the column levels:
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shape3d_c = (/ nproma, nlev, nblks_c /)

Since the ICON model is usually executed in parallel, we have to keep in mind that each
process can perform calculations only on a portion of the decomposed domain. Moreover,
some of the cells between interfacing processes are duplicates of cells from neighbouring
sub-domains (so-called halo cells). Often it is not necessary to loop over these points twice.

An auxiliary function get indices c helps to adjust the loop iteration accordingly:

i_startblk = p_patch(domain)%cells%start_block(grf_bdywidth_c+1)

i_endblk = p_patch(domain)%cells%end_block(min_rlcell_int)

DO jb = i_startblk, i_endblk

CALL get_indices_c(p_patch(domain), jb, i_startblk, i_endblk, is, ie, &

grf_bdywidth_c+1, min_rlcell_int)

DO jc = is, ie

p_nh_state(domain)%diag%newfield(jc,jb) = ...

END DO

END DO

The constants grf bdywidth c and min rlcell int can be found in the modules
mo impl constants grf and mo impl constants, respectively.

Placing the subroutine call. Having encapsulated the computation together with the DO

loops in a custom subroutine, we are ready to place this subroutine call in between ICON’s
physics-dynamics cycle.

Let us once more take a look at Figure 5.1: The outer loop “Dynamics → Physics →
Output” is contained in the core module mo nh stepping inside the TIME LOOP iteration.
Then, for diagnostic calculations it is important to have all necessary quantities available
for input. On the other hand the result must be ready before the call to the output module,

CALL write_name_list_output(jstep)

The fail-safe solution here is to place the call immediately above this call.

Having inserted the call to the diagnostic field computation, we are done with the final
step. Recompile the model code and you are finished!

Style recommendations: When writing your own extensions to ICON it is always a
good idea to keep an eye on the quality of your code.

Make sure that there is no duplicate functionality and try to improve the read-
ability of your subroutines through indentation, comments etc. This will make
it easier for other developers to understand and assimilate. Better introduce own
modules with complete interfaces and avoid USEs and PUBLIC fields.
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5.4. Exercises

The exercises in this section require a number of grid files, external parameters and in-
put data. In particular, initial data and driving boundary data are required. Both were
produced in the real data exercise, Ex. 4.5. The preprocessing of this data is explained in
Ex. 2.4 (see p. 33).

Figure 5.2.: Illustration of the local grid used in Exercises 5.1–5.3. The horizontal resolu-
tion is ≈ 6.5 km (which corresponds to R3B8 in ICON nomenclature). The
boundary region is highlighted, where nudging towards the driving data is
performed. The driving data for this test case has been created in Ex. 2.4.

Running ICON in Limited Area Mode

In this exercise we will run ICON in limited area mode. The model will be driven by initial
and boundary data which have been produced in Ex. 2.4.

EX 5.1

Open the run script case3/run ICON R3B08 lam and prepare it for running a
48 hour forecast on a limited area grid over Germany (see Figure 5.2). As
for the global run, the start date is

2017-01-12T00:00:00 , i.e. January 12, 2017.
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The run script is geared up insofar as all softlinks which specify the model binary,
grids, initial and boundary data are already set. Your main task will be to set up
the ICON namelists for a limited area run.

Basic settings:

• Set the correct start and end date:
ini datetime string, end datetime string.

• Switch on the limited area mode by setting l limited area and init mode

(see Section 5.1.3).

Initial data:

• Specify the initial data file via dwdfg filename. Since we do not make use of
additional analysis information from a second data file, remember to set
lread ana accordingly (see Section 5.1.3).

Boundary data:

• Specify the lateral boundary grid and data via latbc boundary grid,
latbc path and latbc filename. For the latter you will have to make use of
the keywords <y>, <m> <d> and <h> (see Section 5.1.4).

• What is the time interval between two consecutive boundary data files?
The command cdo sinfov may be helpful.

– Answer: s

Set the namelist parameter dtime latbc accordingly.

• For the boundary data, set the number of vertical levels in nlev latbc. Is it
different from the number of vertical levels that is used by the model itself?

– Answer:

Running the model and inspecting the output

• Extend the lat-lon output namelist by the 2 m temperature, surface pressure,
mean sea level pressure, and 10 m gusts. See Appendix C for variable names
and description.

• Submit the job to the Cray XC 40.

• After the job has finished, inspect the model output. You should find multiple
files in the output directory case3/output/exp03 R3B08 dwdlam which
contain hourly output on model levels remapped to a regular lat-lon grid.

– Take a look at the output fields by using ncview. How would you
characterize the overall weather situation for that time period?

southfoehn over the alpine region

strong frontal system passing over Germany

weak frontal system passing over Germany

anticyclonic situation with very low winds
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Temporal Resolution of the Boundary Data

By playing around with the temporal resolution of the boundary data you will get some
idea how this might affect your simulation results.

EX 5.2

Create a copy of your run script run ICON R3B08 lam and name it
run ICON R3B08 lam lowres. Replace the output directory name (EXPDIR) by
exp03 R3B08 dwdlam lowres in order to avoid overwriting your results.

• Halve the time resolution of your forcing (boundary) data, see Section 5.1.3 for
the namelist parameter. Write down your chosen value:

– Answer:

• Submit the job to the Cray XC 40.

• Compare the results with your previous run. Does the time frequency with
which the boundary data are updated have a significant impact on the results?
You can visualize cross sections with the NCL script
case3/plot cross section.ncl and/or make use of ncview.

Implementing New Diagnostics

EX 5.3

In this exercise we will implement two new diagnostic fields (2D variables):

RHI: Saturation over ice (hourly maximum in the column, [%])

QI MAX: Maximum cloud ice content (hourly max. in the column,
[
kg
kg

]
)

This requires to modify the ICON code, where details are given in Section 5.3.

Step-by-step checklist:

• Open the module mo nonhydro types

(subdirectory src/atm dyn iconam).

Insert two new 2D variable pointers
in TYPE(t nh diag): RHI, QI MAX

G
ot
it?

D
id
it!

• Open the module mo nonhydro state

(subdirectory src/atm dyn iconam).

At the end of the subroutine new nh state diag list:
initialize meta-data variables for GRIB2 and NetCDF with
discipline = parameterCategory = parameterNumber = 255

G
ot
it?

D
id
it!

and place the add var calls for the two new fields.

• Open the module mo nh stepping

(subdirectory src/atm dyn iconam).
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Create an (empty) subroutine calculate diagnostics

and place a call to this subroutine
immediately before the call to the output routine.

G
ot
it?

D
id
it!

Fill your subroutine with a 2D loop over all grid points,
calculate the two new quantities.
Two hints:

G
ot
it?

D
id
it!

– The module mo util phys (subdirectory src/atm phy nwp)
may offer some help with respect to RHI.

– The 3D tracer field QI for domain “jg” can be accessed via
p_nh_state%prog(nnow_rcf(jg))%tracer(:,:,:,iqi)).

• Open the namelist of the previous test case 5.1 and insert the new fields in the
output specification.

Compile and run the model. Visualize the results (ncview).
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6. ICON NWP Mode: Further Features

This chapter provides details on some advanced technical aspects of the ICON model.
The following topics are covered: First, we briefly describe the settings for a reduced moist
physics computation and explain an option for coarse-resolution radiation grids. Then we
discuss the possibilities to write model output on regular grids and different sets of vertical
levels. Finally, before concluding this chapter with some exercises, we give a short overview
of the “defensive I/O”, that is the write-out and read-in of the model state in order to
resume the model run, say, after a previous crash.

6.1. Reduced Model Top for Moist Physics

htop moist proc (namelist nonhydrostatic nml, floating-point value)
Another means for improving the efficiency of ICON is depicted in Figure 6.1. The
switch htop moist proc allows to switch off moist physics completely above a cer-
tain height. Moist physics include saturation adjustment, grid scale microphysics,
convection, cloud cover diagnostic, as well as the transport of all water species but
moisture qv. Of course, moist processes should only be switched off well above the
tropopause. The default setting is htop moist proc=22500 m.

hbot qvsubstep (namelist nonhydrostatic nml, floating-point value)
One variant of the implemented horizontal transport scheme for passive scalars is
capable of performing internal substepping. This means that the transport time step
∆t is split into n (usually 2 or 3) substeps during flux computation. This proves
necessary in regions where the horizontal wind speed exceeds a value of about 80m

s .
In real case applications, this mostly happens in the stratosphere and mesosphere.
The recommendation for ∆t given in Section 4.1 then exceeds the numerical stability
range of the horizontal transport scheme. To stabilize the integration without the
need to reduce the time step globally, transport schemes with and without inter-
nal substepping can be combined. The switch hbot qvsubstep indicates the height
above which the transport scheme switches from its default version to a version with
internal substepping. The default value is hbot qvsubstep=22500 m.

Note that substepping is only performed for a particular tracer if a suitable horizontal
transport scheme is chosen. The horizontal transport scheme can be selected individually
for each tracer via the namelist switch ihadv tracer (transport nml). Variants of the
transport scheme with internal substepping are indicated by a two-digit number (i.e. 22,
32, 42, 52).

If moist physics are switched off above 22.5 km (default for NWP applications), internal
substepping only needs to be applied to specific humidity qv, since the advection of all
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top_height (TOA)

htop_moist_proc
moist processes off

moist processes on

hbot_qvsubstep

z

Figure 6.1.: Moist physics are switched off above htop moist proc, while tracer substep-
ping is switched on above hbot qvsubstep. (Remark: hbot qvsubstep is al-
lowed to be lower than htop moist proc)

other moisture fields is switched off anyway. However, be aware that you must explicitly
enable internal substepping if moisture physics are not switched off, or if other (non-
microphysical) tracers are added to the simulation (see, e.g., Chapter 8).

6.2. Reduced Radiation Grid

In real case simulations, radiation is one of the most time consuming physical processes.
It is therefore very desirable to reduce the computational burden without degrading the
results significantly. One possibility is to use a coarser grid for radiation than for dynamics.

The implementation is schematically depicted in Figure 6.2:

Step 1. Radiative transfer computations are usually performed every 30 minutes. Before
doing so, all input fields required by the radiation scheme are upscaled to the next
coarser grid level.

Step 2. Then the radiative transfer computations are performed and the resulting short
wave transmissivities τSW and longwave fluxes FLW are scaled down to the full grid.

Step 3. In a last step we apply empirical corrections to those fields in order to incorporate
the high resolution information about albedo α and surface temperature Tsfc again.
This is especially important at land-water boundaries and the snow line, since here
the gradients in albedo and surface temperature are potentially large.

The reduced radiation grid is controlled with the following namelist switches:

lredgrid phys = .FALSE./.TRUE. (namelist grid nml, logical value)
If set to .TRUE. radiation is calculated on a coarser grid (i.e. one grid level higher)
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Figure 6.2.: Schematic showing how radiation is computed on a reduced (coarser) grid.

radiation grid filename (namelist grid nml, string parameter)
Filename of the grid to be used for the radiation model. An empty string is required,
if radiation is computed on the full (non-reduced) grid.

Note that running radiation on a reduced grid is the standard setting for operational
runs at DWD. Using the reduced radiation grid is also possible for the limited area mode
ICON-LAM. In this case, both the computational grid and the reduced radiation grid are
regional grids. Make sure to create the latter during the grid generation process by setting
dom(:)%lwrite parent = .TRUE., see Section 2.1.2.

6.3. Internal Post-Processing

Many diagnostic tools, e. g. to create contour maps and surface plots, require a regularly
spaced distribution of the data points. Therefore, the ICON model has a built-in out-
put module for the interpolation of model data from the triangular mesh onto a regular
longitude-latitude grid. Furthermore, the model output can be written on a different verti-
cal axis, e. g. on pressure levels, height levels or isentropes. In the following we will describe
how to specify these options.

All of these parameters are set in the namelist output nml. As it was already mentioned
in Section 4.3, multiple instances of this namelist may be specified for a single model run,
where each output nml creates a separate output file.

The relevant namelist parameters for the interpolation of the output fields are:

hl varlist / pl varlist / il varlist (character string lists)
Similar to the namelist parameter ml varlist, these parameters are comma-
separated lists of variables or variable groups. While the hl varlist sets the output
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for height levels, pl varlist defines variables on pressure levels and il varlist

specifies output on isentropic levels.

h levels / p levels / i levels (floating point values, comma-sep.)
Comma separated list of height, pressure, and isentropic levels for which the variables
and groups specified in the above mentioned variable lists should be output. Height
levels must be given in m, pressure levels in Pa and isentropes in K. Level ordering
does not matter.

remap (namelist output nml, integer value 0/1)
In combination with reg lat def / reg lon def:

Latitudes and longitudes for the regular grid points are each specified by three values:
start, increment, end value; given in degrees. Alternatively, the user may set the
number of grid points instead of an increment.

6.4. Checkpointing and Restart

There are many reasons why a simulation execution may be interrupted prematurely or
unexpectedly. The checkpoint/restart option can save you from having to start the ICON
model over from the beginning if it does not finish as expected. It allows you to restart
the execution from a pre-defined point using the data stored in a checkpoint file.

The checkpoint/restart functionality is controlled by the following namelist parameters:

dt checkpoint (namelist io nml, floating-point value)
This parameter specifies the time interval for writing restart files. The restart files are
written in NetCDF format, and their names are specified by the namelist parameter
restart filename, see below.

Note that if the value of dt checkpoint resulting from the model default or user’s
specification is larger than dt restart (see below), then it will be automatically
reset to dt restart, s. t. at least one restart file is generated during the restart
cycle.

lrestart (namelist master nml, logical value)
If this namelist parameter is set to .TRUE. then the current experiment is resumed
from a restart file.

Instead of searching for a specific data filename, the model reads its restart data al-
ways from a file with name restart atm DOM01.nc (analogously for nested domains).
It is implicitly assumed that this file contains the newest restart data, because during
the writing of the checkpoints this file is automatically created as a symbolic link to
the latest checkpoint file.

restart filename (namelist run nml, string parameter)
This namelist parameter defines the name(s) of the checkpointing file(s). By default,
the checkpoint files (not the symbolic link) have the form

gridfile_restart_atm_restarttime.nc
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dt restart (namelist time nml, floating-point value)
This parameter is in some ways related to the dt checkpoint parameter: It specifies
the length of a restart cycle in seconds, i. e. it specifies how long the model runs
until it saves its state to a file and stops. Later, the model run can be resumed, s. t.
a simulation over a long period of time can be split into a chain of restarted model
runs.

Similar to the asynchronous output module, the ICON model (cf. Section 4.4) also offers
the option to reserve a dedicated MPI task for writing checkpoint files. This feature can
be enabled by setting the parameter num restart procs in the namelist parallel nml to
an integer value larger than 0.

6.5. Exercises

The necessary grids, external parameters and IFS input data on a regular grid are already
available in the directory case4/input. The missing interpolation step, which maps
the IFS data onto the triangular ICON grid is explained in Ex. 2.3.

Job submission to the Cray XC 40 can be performed on the Linux cluster lce. Note,
however, that visualization tools (CDO, NCL, ncview) are only available on
the lce!

Starting from IFS analysis

In this lesson you will learn how to start a real-case simulation from IFS data.

EX 6.1

Open the ICON run script case4/run ICON R02B06 ifsini and prepare the script
for running a global 48 hour forecast with 40 km horizontal resolution without nest.
The start date is

2017-01-12T00:00:00 , i.e. January 12, 2017.

• Fill in the name of the ICON model binary (including the path) and several
missing namelist parameters. I. e. set ini datetime string,
end datetime string, ltestcase, ldynamics, ltransport, iforcing,
init mode, itopo as well as the filenames for the initial data and external
parameters (ifs2icon filename, extpar filename). See Section 4.2.1 and
4.2.4 for specific settings.

• For better runtime performance, switch on asynchronous output by setting the
number of dedicated I/O processors (num io procs) to the number of active
output namelists. See Section 4.4.1 for more details on the asynchronous
output module.

• Submit the job to the Cray XC 40.

• After the job has finished, inspect the model output:
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– Take a look at the output files in case4/output. You should find two files
named NWP ... Both should contain 6-hourly model level output up to
48 hours. However, one file contains output on the native ICON grid, the
other one output on a regular lat/lon grid. Use cdo sinfov to identify
which file is which.

– Visualize the 2 m temperature, integrated water vapour, and total
precipitation using the ncview utility. If you like, you can look into other
fields as well.

Running ICON with Different Output Products

In this lesson you will learn how to adjust the model output according to your needs.

EX 6.2

ICON forecast starting from IFS analysis.

• Create a copy of your run script run ICON R02B06 ifsini from Ex. 6.1 and
name it run ICON R02B06 ifsini output. In order to avoid overwriting your
old results, replace the output directory name (EXPDIR) by
exp02 ifsini output.

• The run script contains a tentative commented-out output namelist. Activate
the name list and fill in the missing parameters. See Section 4.3 for additional
details regarding output namelists. Deactivate (comment out) all other output
namelists. Output should be written

– in NetCDF format

– 6-hourly from the start until simulation end (48 hours)

– with all output steps in one file

– on the native (triangular) grid

– including grid information

– using the filename prefix NWP DWD

– using a relative time axis (forecast mode)

– containing model level output for qv, qc, qi, qr, qs, 2m temperature, total
precipitation, and mean sea level pressure. See Appendix C for variable
names and description.

• Add a second output namelist which is identical to the previous one, except for
the following changes:

– 6-hourly output should become active after 24 hours until the end of the
model run.
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– Output should be created on a regular lat-lon grid with a resolution of
0.75◦ in both zonal and meridional direction.

– Set the filename prefix to NWP DWD lonlat.

– Output of qv, qc, qi, qr, qs should be on height levels instead of model
levels. In addition, write out total precipitation, 2 m temperature, and
mean sea level pressure, again.

– Define 13 height levels ranging from 1 km up to 25 km with 2 km intervals.
See Section 6.3 for help.

• Let the model write a restart file every 36 h. For this you have to adapt
dt checkpoint. See Section 6.4 for additional details.

• Submit the job to the Cray XC 40.

• Have a short break and relax :-)

• Check correctness of your output files:

– You should find three output files in your output directory. Apply the
command cdo sinfov data-file.nc > data-file.sinfov to each of your
output files. Compare with the reference output in Tables 6.1–6.3, to see
whether your output namelists are correct.

• Visualization:

– Apply the NCL script case4/zonal mean.ncl to your lat-lon output field.
The script plots vertical cross sections of zonally averaged qv as well as
qc+ qi+ qr+ qs after 48 h and contour plots of accumulated precipitation,
sea-level pressure and 2 m temperature. Compare it to Figure 6.3.

• The following fact should become visible from Figure 6.3:

Moist quantities except qv are approximately 0 above the tropopause. Since
the NWP microphysics are not capable of dealing with polar stratospheric
clouds (PSCs) anyway, one can save computing time by completely switching
off moist physics in the upper stratosphere and mesosphere. The height above
which moist physics are switched off can be set with htop moist proc. See
Section 6.1 for more information. In your run, this switch was set to a height
of 22500 m, while for Figure 6.3 the parameter htop moist proc was set to a
value larger than the model top height. Based on your comparison, would you
say that a moist physics maximum height htop moist proc=22500 m is a
meaningful choice?
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Table 6.1.: Structure and content of file NWP DWD DOM01 ML 0001.nc

File format : netCDF2

-1 : Institut Source Ttype Levels Num Points Num Dtype : Parameter name

1 : unknown git@git.mpimet instant 90 1 327680 1 F32 : qv

2 : unknown git@git.mpimet instant 90 1 327680 1 F32 : qc

3 : unknown git@git.mpimet instant 90 1 327680 1 F32 : qi

4 : unknown git@git.mpimet instant 90 1 327680 1 F32 : qr

5 : unknown git@git.mpimet instant 90 1 327680 1 F32 : qs

6 : unknown git@git.mpimet instant 1 2 327680 1 F32 : t_2m

7 : unknown git@git.mpimet instant 1 3 327680 1 F32 : tot_prec

8 : unknown git@git.mpimet instant 1 3 327680 1 F32 : pres_msl

Grid coordinates :

1 : unstructured : points=327680 nvertex=3

grid : number=24 position=1

clon : -3.14159 to 3.14159 radian

clat : -1.56615 to 1.56615 radian

available : cellbounds

uuid : 9b0b03ca-18c4-11e4-9318-776f158edd08

Vertical coordinates :

1 : generalized_height : levels=90

height : 1 to 90 by 1

bounds : 1-2 to 90-91 by 1

uuid : acbc56ad-2658-bd10-7ce8-cb2a4afd2c80

2 : height : levels=1

height_2 : 2 m

3 : surface : levels=1

Time coordinate : 9 steps

RefTime = 2017-01-12 00:00:00 Units = minutes Calendar = proleptic_gregorian

YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss

2017-01-12 00:00:00 2017-01-12 06:00:00 2017-01-12 12:00:00 2017-01-12 18:00:00

2017-01-13 00:00:00 2017-01-13 06:00:00 2017-01-13 12:00:00 2017-01-13 18:00:00

2017-01-14 00:00:00

Table 6.2.: Structure and content of file NWP DWD lonlat DOM01 ML 0001.nc

File format : netCDF2

-1 : Institut Source Ttype Levels Num Points Num Dtype : Parameter name

1 : unknown git@git.mpimet instant 1 1 115680 1 F32 : t_2m

2 : unknown git@git.mpimet instant 1 2 115680 1 F32 : tot_prec

3 : unknown git@git.mpimet instant 1 2 115680 1 F32 : pres_msl

Grid coordinates :

1 : lonlat : points=115680 (480x241)

lon : 0 to 359.25 by 0.75 degrees_east circular

lat : -90 to 90 by 0.75 degrees_north

Vertical coordinates :

1 : height : levels=1

height : 2 m

2 : surface : levels=1

Time coordinate : 5 steps

RefTime = 2017-01-12 00:00:00 Units = minutes Calendar = proleptic_gregorian

YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss

2017-01-13 00:00:00 2017-01-13 06:00:00 2017-01-13 12:00:00 2017-01-13 18:00:00

2017-01-14 00:00:00
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Figure 6.3.: Zonal average of specific humidity qv and total condensate qc + qi + qr + qs
at 2017-01-14T00:00:00 (i.e. 48 h forecast). Note that the Y-axis starts at a
height of 1000 m. For this reference run, htop moist proc=100 km was chosen,
i.e. moist physics were computed up to the model top (75 km).

Restarting a Simulation

This exercise practices the restart of an ICON simulation.

EX 6.3

Exercise 6.2 did not contain the sea-ice height h ice. Fortunately, the exercise has
produced a checkpoint file from which we can restart the simulation.

• Restart the ICON model by setting the namelist parameter lrestart as
explained in Section 6.4 and do the following changes:

– The simulation should end after 48h in total (2017-01-14T00:00:00). This
way we can compare the output directly to the results from Exercise 6.2.
If you have specified the simulation length via the parameter nsteps in
namelist run nml, instead of end datetime string, you need to adapt it
accordingly.

– For the resumed run, specify the sea-ice height h ice as an additional
output variable on the native ICON grid.

• After the restarted run has completed, use the cdo infov command (see
Section 7.1.2 for details) to get minimum, maximum and average value of the
sea-ice height h ice after 48 h in the output data.

H ICE:
MAX MIN AVG

m m m

• Execute the NCL script case4/sea ice plot.ncl to create a polar plot.
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The following fact should become visible from the polar plot: In contrast to
the DWD analysis, the IFS analysis used in this chapter does not offer the
sea-ice height as an initialization field. Therefore, when starting from IFS
analysis, the sea ice height is always set to a constant value of 1 m. Figure 6.4
shows the sea ice height after 48 h for both the IFS- and DWD-based
initialization for reference.

• If time permits, compare the model output for 2017-01-14T00:00:00 (after
48 hours) that you have created in Exercise 6.2 with the corresponding fields
of the restarted simulation. Again, you can use the cdo infov command for
this purpose. There should not be any notable differences between the output
fields, meaning that a restarted run will produce bit-identical results.

Figure 6.4.: Sea-ice height on the northern hemisphere after 48h (simulation time 2017-01-
14T00:00:00), Left: Simulation started from IFS analysis as in Exercise 6.3;
Right: Simulation started from DWD analysis. Sea-ice height is not offered by
the IFS analysis. Thus, on the left, the sea-ice was initialized with a constant
height of 1 m.

Reduced Grid for Radiation

In this exercise you will learn how to control the reduced (coarser) grid for radiation.

EX 6.4

Switching off the reduced grid:

• Create another copy from your run script run ICON R02B06 ifsini from
Ex. 6.1 and name it run ICON R02B06 ifsini rg.
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• Open the file run ICON R02B06 ifsini rg.

– Change the name of the output directory (EXPDIR) to exp02 ifsini rg.
This avoids overwriting your old results.

– Switch off the reduced radiation grid. This is controlled by the namelist
switches lredgrid phys and radiation grid filename. See Section 6.2
for help.

– Submit the job script.

– Have a short break and relax :-)

• After the job has finished, compare the timers for radiation of your previous
run (run ICON R02B06 ifsini) and the new run
(run ICON R02B06 ifsini rg). What is the speedup of the radiation module?
Which speedup would you expect from “theory”?

– Answer: Speedup achieved =
Tnonrg

Trg

– Answer: Speedup expected =

• Comparing the quality of results with and without reduced radiation grid is
beyond the scope of this tutorial. To give you a rough impression that running
forecasts with a reduced radiation grid is a valid choice, we have added
Figure 6.5. It shows verification results (BIAS and RMSE) for 850 hPa
temperature on the northern hemisphere in January with and without reduced
radiation grid.
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Table 6.3.: Structure and content of file NWP DWD lonlat DOM01 HL 0001.nc

File format : netCDF2

-1 : Institut Source Ttype Levels Num Points Num Dtype : Parameter name

1 : unknown git@git.mpimet instant 13 1 115680 1 F32 : qv

2 : unknown git@git.mpimet instant 13 1 115680 1 F32 : qc

3 : unknown git@git.mpimet instant 13 1 115680 1 F32 : qi

4 : unknown git@git.mpimet instant 13 1 115680 1 F32 : qr

5 : unknown git@git.mpimet instant 13 1 115680 1 F32 : qs

Grid coordinates :

1 : lonlat : points=115680 (480x241)

lon : 0 to 359.25 by 0.75 degrees_east circular

lat : -90 to 90 by 0.75 degrees_north

Vertical coordinates :

1 : generic : levels=13

alt : 25000 to 1000 m

Time coordinate : 5 steps

RefTime = 2017-01-12 00:00:00 Units = minutes Calendar = proleptic_gregorian

YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss YYYY-MM-DD hh:mm:ss

2017-01-13 00:00:00 2017-01-13 06:00:00 2017-01-13 12:00:00 2017-01-13 18:00:00

2017-01-14 00:00:00

CHAPTER 6. ICON NWP MODE: FURTHER FEATURES ICON Model Tutorial



6.5 Exercises 97

Figure 6.5.: Verification results (BIAS and RMSE) for 850 hPa temperature on the north-
ern hemisphere for January 2012 for the ICON model and DWD’s former
global model GME. Upper panel: ICON with full radiation grid. Lower panel:
ICON with reduced radiation grid. ICON (R2B6L90) is shown in red, while
the GME with 40 km horizontal resolution is shown in blue for reference. In
terms of RMSE, ICON results with and without reduced radiation grid are
barely indistinguishable.
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7. Post-Processing and Visualization

ICON offers the possibility to produce output either in NetCDF or GRIB2 format. Many
visualization tools such as GrADS or Matlab now include packages with which NetCDF
data files can be handled. The GRIB format, which is also commonly used in meteorology,
can be processed with these tools as well. However, since the standardization of unstruc-
tured GRIB records is relatively new, many post-processing packages offer only limited
support for GRIB data that has been stored on the triangular ICON grid.

For the visualization of regular grid data we will restrict ourselves in this course to a very
simple program, ncview, which does not have a large functionality but is a very easy-to-
use program for a quick view of NetCDF output files and therefore very useful for a first
impression.

Model data that has been stored on the triangular ICON grid can be visualized with the
NCL scripting language or the Generic Mapping Tools (GMT). Section 7.3 contains some
examples how to visualize NetCDF data sets without the need of an additional regridding.

7.1. Retrieving Data Set Information

For a quick overview of dimensions and variables, the command-line utility ncdump can
be used. This program will shortly be described first. More sophisticated tools exist, for
cutting out subsets of data, e. g., and producing averages or time series. One of these tools
are the cdo utilities.

7.1.1. ncdump

Ncdump comes with the NetCDF library as provided by Unidata and generates a text
representation of a NetCDF file on standard output. The text representation is in a form
called CDL (network Common Data form Language). Ncdump may be used as a simple
browser for NetCDF data files, to display the dimension names and sizes, variable names,
types and shapes, attribute names and values, and optionally, the data values themselves
for all or selected variables in ASCII format. For example, to investigate the structure of
a NetCDF file, use

ncdump -c data-file.nc

Dimension names and sizes, variable names, dependencies and values of dimensions will
be displayed. To get only header information (same as -c option but without the values
of dimensions) use

ICON Model Tutorial CHAPTER 7. POST-PROCESSING AND VISUALIZATION



100 7.1 Retrieving Data Set Information

ncdump -h data-file.nc

To display the values of a specified variable which is contained in the NetCDF file, type

ncdump -v variable data-file.nc

To send data to a text file use

ncdump -b c data-file.nc > data-file.cdl

to produce an annotated CDL version of the structure and the data in the NetCDF file
data-file.nc. You can also save data for specified variables for example in *.txt-files just
using:

ncdump -v variable data-file.nc > data-file.txt

For further information on working with ncdump see

http://www.unidata.ucar.edu/software/netcdf/ · · ·
docs/netcdf utilities guide.html#ncdump guide

7.1.2. CDO – Climate Data Operators

The CDO (Climate Data Operators) are a collection of command-line operators to manip-
ulate and analyse NetCDF and GRIB data. The CDO package is developed and maintained
at MPI for Meteorology in Hamburg. Source code and documentation are available from

https://code.zmaw.de/projects/cdo

The tool includes more than 400 operators to print information about data sets, copy,
split and merge data sets, select parts of a data set, compare data sets, modify data
sets, arithmetically process data sets, to produce different kind of statistics, to detrend
time series, for interpolation and spectral transformations. The CDOs can also be used to
convert from GRIB to NetCDF or vice versa, although some care has to be taken there.

In particular, the ”operator” cdo infov writes information about the structure and con-
tents of all input files to standard output. By typing

cdo infov data-file.nc

in the command-line for each field the following elements are printed: date and time,
parameter identifier and level, size of the grid and number of missing values, minimum,
mean and maximum. A variant of this CDO operator is

cdo sinfov data-file.nc

which prints out short information of each field.
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7.2. Plotting Data Sets on Regular Grids with ncview

Ncview is a visual browser for NetCDF format files developed by David W. Pierce. Using
ncview you can get a quick and easy look at regular grid data in your NetCDF files. It is
possible to view simple movies of data, view along different dimensions, to have a look at
actual data values at specific coordinates, change colormaps, invert data, etc.

To install ncview on your local platform, see the ncview website:
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

You can run the program by typing:

ncview data-file.nc

which will open a new window with the display options.

If data-file.nc contains wildcards such as ’*’ or ’?’ then all files matching the description
are scanned, if all of the files contain the same variables on the same grid. Choose the
variable you want to view. Variables which are functions of longitude and latitude will be
displayed in two-dimensional images. If there is more than one time step available you can
easily view a simple movie by just pushing the forward button. The appearance of the
image can be changed by varying the colors of the displayed range of the data set values
or by adding/removing coastlines. Each one- or two-dimensional subset of the data can
be selected for visualization. Ncview allows the selection of the dimensions of the fields
available, e.g. longitude and height instead of longitude and latitude of 3D fields.

The pictures can be sent to Postscript (*.ps) output by using the function print. Be
careful that whenever you want to close only a single plot window to use the close

button, because clicking on the �-icon on the top right of the window will close all ncview
windows and terminate the entire program!

7.3. Plotting Data Sets on the Triangular Grid

7.3.1. NCL – NCAR Command Language

The NCAR Command Language (NCL) is an interpreted language designed specifically
for scientific data analysis and visualization. It allows convenient access to data in a variety
of formats such as NetCDF and GRIB1/2, among others. NCL has many features com-
mon to modern programming languages, such as types, variables, operators, expressions,
conditional statements, loops, and functions and procedures.

Besides an interactive mode, NCL allows for script processing (recommended). NCL scripts
are processed on the command-line by typing

ncl filename.ncl

For visualizing ICON data on the native triangular grid, we recommend using NCL 6.2.0
or higher.
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NCL Quick-Start Example

The following example script creates a temperature contour plot with NCL (see Figure 7.1):

begin

; Open model level output file

File = addfile( "JABW_DOM01_ML_0001.nc", "r" )

; read grid information (i.e. coordinates of cell centers and vertices)

rad2deg = 45./atan(1.) ; radians to degrees

clon = File->clon * rad2deg ; cell center, lon (ncells)

clat = File->clat * rad2deg ; cell center, lat (ncells)

vlon = File->clon_bnds * rad2deg ; cell vertices, lon (ncells,3)

vlat = File->clat_bnds * rad2deg ; cell vertices, lat (ncells,3)

; read data

;

temp_ml = File->temp(:,:,:) ; dims: (time,lev,cell)

print("max T " + max(temp_ml) )

print("min T " + min(temp_ml) )

; create plot

;

wks = gsn_open_wks("ps","outfile")

gsn_define_colormap(wks,"testcmap") ; choose colormap

ResC = True

ResC@sfXArray = clon ; cell center (lon)

ResC@sfYArray = clat ; cell center (lat)

ResC@sfXCellBounds = vlon ; define triangulation

ResC@sfYCellBounds = vlat ; define triangulation

ResC@cnFillOn = True ; do color fill

ResC@cnFillMode = "cellfill"

ResC@cnLinesOn = False ; no contour lines

; plot temperature level

plot = gsn_csm_contour_map(wks,temp_ml(0,80,:),ResC)

end

To open a data file for reading, the function addfile returns a file variable reference
to the specified file. Second, for drawing graphics, the function gsn open wks creates an
output resource, where the “ps”, “pdf” or “png” format are available. Third, the command
gsn csm contour map creates and draws a contour plot over a map.

Loading the coordinates of the triangle cell centers into NCL (resources sfXArray and
sfYArray) is essential for visualizing ICON data on the native grid. Loading the vertex
coordinates of each triangle (resources sfXCellBounds and sfYCellBounds), however, is
optional. If not given, a Delaunay triangulation will be performed by NCL, based on the
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cell center information. If given, the triangles defining the mesh will be deduced by sorting
and matching vertices from adjacent cell boundaries. If you are interested in the correct
representation of individual cells, the resource sf[X/Y]CellBounds should be set.

Creating a plot can get very complex depending on how you want to look at your data.
Therefore we refer to the NCL documentation that is available online under

http://www.ncl.ucar.edu

Section 7.3.2 contains a step-by-step tutorial for another NCL example. For the exercises in
this tutorial we refer to the prepared NCL scripts. These files are stored in the subdirectory
test cases/casexx together with the model run scripts.

Figure 7.1.: ICON temperature field on a specific model level produced with the above
NCL script.

7.3.2. NCL Step-by-step Tutorial

In the following we provide a detailed step-by-step tutorial for producing graphics from
an ICON data set. We will use NCL’s batch mode, i.e. instead of typing each command
in interactive mode, we will create a file visualization tutorial.ncl where a sequence
of commands can be stored and executed with

ncl visualization_tutorial.ncl

Please note that this tutorial script requires NCL version 6.2.0 or higher.

We begin by loading some NCL ”libraries” which provide high-level plotting functions
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; load libraries

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"

These lines also contain a comment. Comment lines in NCL are preceded by the semicolon
character ’;’.

Step 1: Reading grid coordinates from file

Then, as the ICON model uses an unstructured grid topology, we open and read such a
topology file, stored in NetCDF format, by the following commands:

gridfile = addfile( "gridfile.nc", "r" )

print(gridfile)

The print command lists all variables that have been found in the NetCDF file as textual
output. For the ICON grid, the vertex positions of the grid triangles are of special interest.
They are stored as longitude/latitude positions in the vlon, vlat (this is explained in more
detail in Section 2.1.1, page 13). For NCL we convert from steradians to degrees:

rad2deg = 45./atan(1.)

vlon = gridfile->vlon * rad2deg

vlat = gridfile->vlat * rad2deg

Additionally, we load the vertex indices for each triangle edge of the icosahedral mesh.

edge_vertices = gridfile->edge_vertices

The indices are stored in the grid file data set edge vertices and reference the corre-
sponding vertices from vlon, vlat,

edge #i : (vlon[q1], vlat[q1]) — (vlon[q2], vlat[q2])

where

q1/2 := edge vertices[1/2, i]− 1

Note that by subtracting 1 we take the 0-based array indexing of NCL into account.

Furthermore, it is convenient to store the size of the edges array, i.e. the number of grid
edges, in a local variable nedges.
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size_edge_vertices = dimsizes(edge_vertices)

nedges = size_edge_vertices(1)

Step 2: Creating a plot of the triangular grid

Producing graphics with NCL requires the creation of a so-called workstation, i.e. a de-
scription of the output device. In this example, this “device” will be a PostScript file
plot.ps, but we could also define a different output format, e.g. "png" instead.

wks = gsn_open_wks("ps", "plot")

Then the map settings have to be defined and we collect these specifications in a data
structure named config1. First of all, we disable the immediate drawing of the map
image, since the ICON icosahedral grid plot will consist of two parts: the underlying map
and the grid lines. We do so by setting gsnFrame and gsnDraw to False.

We then define an orthographic projection centered over Europe. It is important that grid
lines are true geodesic lines, otherwise the illustration of the ICON grid would contain
graphical artifacts, therefore we set the parameter mpGreatCircleLinesOn.

config1 = True

config1@gsnMaximize = True

config1@gsnFrame = False

config1@gsnDraw = False

config1@mpProjection = "Orthographic"

config1@mpGreatCircleLinesOn = True

config1@mpCenterLonF = 10

config1@mpCenterLatF = 50

config1@pmTickMarkDisplayMode = "Always"

Having completed the setup of the config1 data structure, we can create an empty map
by the following command:

map = gsn_csm_map(wks,config1)

Now, the edges of the ICON grid must be added to the plot. As described before, we
convert the indirectly addressed edge vertices into an explicit list of geometric segments
with dimensions [nedges× 2]:
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Figure 7.2.: The two plots generated by the NCL example script in Section 7.3.2.

ecx = new((/nedges,2/),double)

ecy = new((/nedges,2/),double)

ecx(:,0) = vlon(edge_vertices(0,:)-1)

ecx(:,1) = vlon(edge_vertices(1,:)-1)

ecy(:,0) = vlat(edge_vertices(0,:)-1)

ecy(:,1) = vlat(edge_vertices(1,:)-1)

There exists an NCL high-level command for plotting lines, gsn add polyline. Since
this function expects one-dimensional lists for its interface, we use the auxiliary function
ndtooned for reshaping the array of lines,

lines_cfg = True

lines_cfg@gsSegments = ispan(0,nedges * 2,2)

poly = gsn_add_polyline(wks,map,ndtooned(ecx),ndtooned(ecy),lines_cfg)

The whole plotting process is now triggered by the command

draw(map)

frame(wks)

The first page of the resulting PostScript file plot.ps will contain an illustration similar
to Fig. 7.2 (left part).

Step 3: Loading a data set from a second file

In order to visualize unstructured data sets that have been produced by the ICON model
they have to be stored in NetCDF format. As a second file we open such a NetCDF data
set datafile.nc in read-only mode and investigate its data set topography c:
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datafile = addfile( "datafile.nc", "r" )

topo = datafile->topography_c

printVarSummary(topo)

The final step of this exercise is the creation of a contour plot from the data contained in
datafile. As it has been stated by the previous call to printVarSummary, the data sites
for the field topography c are the triangle circumcenters, located at clon, clat.

clon = gridfile->clon * rad2deg

clat = gridfile->clat * rad2deg

For a basic contour plot, a cylindrical equidistant projection with automatic adjustment
of contour levels will do. It is important to specify the two additional arguments sfXArray
and sfYArray.

config2 = True

config2@mpProjection = "CylindricalEquidistant"

config2@cnFillOn = True

config2@cnLinesOn = False

config2@sfXArray = clon

config2@sfYArray = clat

Afterwards, we generate the plot (page 2 in our PostScript file) with a call to
gsn csm contour map.

map = gsn_csm_contour_map(wks,topo,config2)

Note that this time it is not necessary to launch additional calls to draw and frame, since
the default options in config2 are set to immediate drawing mode.

You may wonder why the plot has a rather smooth appearance without any indication of
the icosahedral triangular mesh. What happened is that NCL generated its own Delaunay
triangulation building upon the cell center coordinates provided via clon, clat. Thus,
we are unable to locate and investigate individual ICON grid cells. In order to visual-
ize individual cells, we need to additionally load the vertex coordinates of each triangle
into NCL. This information is also available from the grid file and is stored in the fields
clon vertices, clat vertices.

clon_vertices = gridfile->clon_vertices * rad2deg

clat_vertices = gridfile->clat_vertices * rad2deg

config2@sfXCellBounds = clon_vertices

config2@sfYCellBounds = clon_vertices

config2@cnFillMode = "CellFill"
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By choosing the CellFill mode, it is ensured that every grid cell is filled with a single
color.

Afterwards we generate the plot once more with a call to gsn csm contour map.

map = gsn_csm_contour_map(wks,topo,config2)

Do you see the difference?

7.3.3. GMT – Generic Mapping Tools

GMT is an open source collection of command-line tools for manipulating geographic and
Cartesian data sets and producing PostScript illustrations ranging from simple x-y plots
via contour maps to 3D perspective views. GMT supports various map projections and
transformations and facilitates the inclusion of coastlines, rivers, and political boundaries.
GMT is developed and maintained at the University of Hawaii, and it is supported by the
National Science Foundation.

To install GMT on your local platform, see the GMT website:

http://gmt.soest.hawaii.edu

Since GMT is comparatively fast, it is especially suited for visualizing high resolution
ICON data on the native (triangular) grid. It is capable of visualizing individual grid cells
and may thus serve as a helpful debugging tool. So far, GMT is not capable of reading
ICON NetCDF or GRIB2-output offhand. However, CDO can be used to convert your
data to a format readable by GMT.

From your NetCDF output, you should first select your field of interest and pick a single
level at a particular point in time:

cdo -f nc selname,VNAME -seltimestep,ITIME -sellevidx,ILEV \
ICON OUTPUT.nc ICON SELECTED.nc

Now this file must be processed further using the outputbounds command from CDO,
which finally leads to an ASCII file readable by GMT.

cdo -outputbounds ICON SELECTED.nc > ICON SELECTED.gmt

The output looks as follows:

# Generated by CDO version 1.6.3

#

# Operator = outputbounds

# Mode = horizonal

#

# File = NWP_DOM01_ML_0006_temp.nc
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# Date = 2012-01-04

# Time = 00:00:00

# Name = temp

# Code = 0

# Level = 80

#

> -Z254.71

-155.179 90

36 89.5695

108 89.5695

-155.179 90

> -Z255.276

36 89.5695

36 89.1351

72 89.2658

36 89.5695

...

For each triangle, it contains the corresponding data value (indicated by -Z) and vertex
coordinates.

As a starting point, a very basic GMT script is added below. It visualizes the content of
test.gmt on a cylindrical equidistant projection including coastlines and a colorbar. An
example plot based on this script is given in Figure 7.3.

#!/bin/bash

# Input filename

INAME="test.gmt"

# Output filename

ONAME="test.ps"

# generate color palette table (min/max/int)

makecpt -Cpolar -T"235"/"305"/"5" > colors.cpt

# draw triangle and take fill color from colors.cpt

psxy ${INAME} \

-Rd -Jq0/1:190000000 -Ccolors.cpt -X3.2 -Y4. -K > ${ONAME}

# visualize coastlines

pscoast -Rd -Jq0/1:190000000 -Dc -W0.25p,black -K -O >> $ONAME

# plot colorbar

psscale -D11c/14c/18c/1.0ch -Ccolors.cpt -E -B:"T":/:K: -U -O>> $ONAME

Note: In order to get filled polygons, the -L option must be added to psxy. The purpose
of -L is to force closed polygons, which is a prerequisite for polygon filling. However, in the
latest release of GMT (5.1.2) adding this option results in very large output files whose
rendering is extremely slow. Thus, the -L option was omitted here so that only triangle
edges are drawn and colored.
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Figure 7.3.: ICON temperature field on a specific model level produced with the above
GMT script.
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8. Running ICON-ART

In this lesson you will learn how to run the package for Aerosols and Reactive Trace
Gases, ICON-ART (Rieger et al., 2015).

8.1. General Remarks

ICON-ART is an extension of the ICON model that was developed at the Institute of
Meteorology and Climate Research (IMK) at the Karlsruhe Institute of Technology (KIT).
It allows the online calculation of reactive trace substances and their interaction with the
atmosphere. The interfaces to the ART code are part of the official ICON code.

In order to obtain the ART code, the institution that wants to use ICON-ART has to sign
an additional license agreement with Karlsruhe Institute of Technology (KIT). Further
information can be found on the following website:

http://icon-art.imk-tro.kit.edu

After you have signed the license agreement, you will be provided with a compressed file
with the recent source code of ART which is called ART-v<X>.<YY>.tar.gz. <X> and <YY>

indicate the version number.

8.2. ART Directory Structure

The ART directory contains several subdirectories. The purposes of those subdirectories
are explained in the following.

The Directory aerosol dynamics

ICON-ART solves the diffusion equation of aerosol. For this purpose, the following pro-
cesses have to be considered: Advection1, turbulent diffusion1, changes due to subgrid-
scale convective transport1, sedimentation, washout, coagulation, condensation from the
gas-phase, radioactive decay, and emissions2. With a few exceptions (marked by 1 and
2), the modules calculating the tendencies due to these processes are stored within the
aerosol dynamics folder. Additionally, routines calculating diagnostic properties that
are needed as input for the aerosol process parameterizations are stored within this folder.

The exceptions are the following:
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• 1: The tendencies due to these processes are calculated within the ICON code. This
is part of the tracer framework of ICON.

• 2: The emission routines are an important source for atmospheric aerosol. ART offers
the option to easily plug in new emission schemes. In order to keep clarity within
the folders, emissions routines get their own folder emissions (see below).

The Directory chemistry

ICON-ART solves the diffusion equation of gaseous tracers. Besides advection, turbulent
diffusion and subgrid-scale convective transport which are treated by the ICON tracer-
framework, this includes also chemical reactions. The chemistry directory contains the
routines to calculate chemical reaction rates of gaseous species.

The Directory emissions

Within the emissions directory, emission routines for aerosol and gaseous species are
stored.

The Directory externals

Within the externals directory, code from external libraries is stored (i.e. cloudj, meci-
con, tixi).

The Directory io

The io directory contains input and output routines.

The Directory mozart init

The mozart init directory contains routines needed for an initialization of ICON-ART
tracers with Mozart results.

The Directory phy interact

Modules within the phy interact directory treat the direct interaction of aerosol particles
and trace gases with physical parameterizations of ICON. Examples are the interaction of
aerosols with clouds (i.e. the two-moment microphysics) and radiation.
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The Directory runctrl examples

The runctrl examples directory contains the following subdirectories

emiss ctrl storage of example emission files for volcanic emissions, radioactive release

init ctrl location of coordinate file for MOZART initialisation and initialisation table for
LINOZ (linearized ozone) algorithm

photo ctrl location of CloudJ Input files (Cross sections, Q-Yields)

run scripts runscripts for testsuite and training course testcases

xml ctrl storage of basic .xml files for tracer registration and system files (.dtd)

The Directory shared

The shared directory contains a collection of routines that do not fit into other categories.
This applies mostly to initialization and infrastructure routines.

The Directory tools

The tools directory contains helpful tools for ART developers (e.g. a generalized clipping
routine).

8.3. Installation

In this section, a brief description of how to compile ICON-ART is given. The user has
to do the same steps as compiling ICON with a few additions. The reader is referred
to Section 1.2.2 or Zängl et al. (2014) in order to compile ICON successfully. First, the
ART-v<X>.<YY>.tar.gz file has to be uncompressed. You will obtain a directory, which
should be copied inside the ICON source directory $ICON-DIR/src/. In the following, we
refer to this directory $ICON-DIR/src/ART-v<X>.<YY> as $ARTDIR .

If you have compiled ICON without ART before, you have to do clean up first:

make distclean

In order to compile ICON-ART, an additional flag has to be set at the configuration
command:

./configure --with-fortran=cray --with-art

By setting --with-art a compiler flag -D ICON ART is set. This flag tells the preprocessor
to compile the code inside the ART interfaces and hence connect the ICON code with the
ART code. As soon as the configuration is finished, you can start to compile the ICON-
ART code:

./build_command
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8.4. Configuration of an ART Job

8.4.1. Recommended ICON Namelist Settings

It is necessary for the user to choose the ICON settings carefully to obtain a stable ICON-
ART simulation with scientifically reasonable results. Hence, the user should pay special
attention to the namelist parameters listed in table 8.1.

Table 8.1.: Recommended ICON namelist settings for ART tracers.

Parameter Value Namelist Description

dtime - run nml If facing stability problems,
it is recommended to use a
shorter time step as recom-
mended by operational setups
(e.g. 3

5 ·dtimeoper).

ndyn substeps - run nml There is no need to call the dy-
namics more often than in oper-
ational setup. Adjust it accord-
ing to your dtime choice.

8.4.2. ART Namelists

ICON-ART has an own namelist to modify the setup of ART simulations at runtime. The
main switch for ART, lart, is located inside run nml. The namelist for the other ART
switches is called art nml.

A naming convention is used in order to represent the type of data. An INTEGER namelist
parameter starts with iart , a REAL namelist parameter start with rart , a LOGICAL

namelist parameter starts with lart , and a CHARACTER namelist parameter starts with
cart .

The ICON-ART namelist is located in the module src/namelists/mo art nml.f90. Gen-
eral namelist parameters are listed and explained within Table 8.2. Namelist parameters
for ART input are listed within Table 8.3. Namelist parameters related to atmospheric
chemistry are listed within Table 8.4. Namelist parameters related to aerosol physics are
listed within Table 8.5.

CHAPTER 8. RUNNING ICON-ART ICON Model Tutorial



8.4 Configuration of an ART Job 115

Table 8.2.: General namelist parameters to control the ART routines. These switches are
located inside art nml. The only exception is the lart switch which is located
in the run nml.

Namelist Parameter Default Description

lart .FALSE. Main switch which enables the ART
modules. Located in the namelist
run nml.

iart ntracer 0 Number of transported ART trac-
ers. This number is automatically
added to the ICON variable ntracer.
It has to be equal to the number
of tracers listed in your XML files
specified by cart chemistry xml,
cart aerosol xml and
cart passive xml.

lart chem .FALSE. Enables chemistry. The chemical mech-
anism and the according species are set
via iart chem mechanism.

lart pntSrc .FALSE. Enables point sources for passive
tracer. The sources are controled via
cart pntSrc xml. See also Section 8.4.5.

lart aerosol .FALSE. Main switch for the treatment of atmo-
spheric aerosol.

lart passive .FALSE. Main switch for the treatment of passive
tracer.

lart diag out .FALSE. If this switch is set to .TRUE., diagnos-
tic output fields are available. Set it to
.FALSE. when facing memory problems.
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Table 8.3.: Namelist parameters to control ART input. These switches are located inside
art nml. For details regarding the tracer and modes initialization with XML
files, see Section 8.4.3.

cart chemistry xml ’’ Path and file name to the XML file for
specifying chemical tracer. See also Sec-
tion 8.4.3.

cart aerosol xml ’’ Path and file name to the XML file for
specifying aerosol tracer. See also Sec-
tion 8.4.3.

cart passive xml ’’ Path and file name to the XML file for
specifying passive tracer. See also Sec-
tion 8.4.3.

cart modes xml ’’ Path and file name to the XML file for
specifying aerosol modes. See also Sec-
tion 8.4.4.

cart pntSrc xml ’’ Path and file name to the XML file for
specifying point source emissions. See
also Section 8.4.5.

Table 8.4.: Namelist parameters related to atmospheric chemistry. These switches art lo-
cated inside art nml.

Namelist Parameter Default Description

iart chem mechanism 0 Sets the chemical mechanism and takes
care of the allocation of the according
species. Possible values:
0: Stratosph. short-lived Bromocarbons.
1: Simplified OH chemistry, takes pho-
tolysis rates into account
2: Full gas phase chemistry
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Table 8.5.: Namelist parameters related to aerosol physics. These switches are located in
art nml .

Namelist Parameter Default Description

iart seasalt 0 Treatment of sea salt aerosol. Possible
values:
0: No treatment.
1: As specified in Lundgren et al. (2013).

iart volcano 0 Treatment of volcanic ash particles. Pos-
sible values:
0: No treatment.
1: 1-moment treatment. As described in
Rieger et al. (2015).
2: 2-moment treatment.

cart volcano file ’’ Path and filename of the input file for
the geographical positions and the types
of volcanoes.
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8.4.3. Tracer Definition with XML Files

The definition of tracers in ICON-ART is done with the use of three XML files. A des-
tinction between aerosol, chemical and passive tracers is made. Aerosol tracers are defined
by an XML file specified with the namelist switch cart aerosol xml containing all liquid
and solid particles participating in aerosol dynamics. Chemical tracers are defined by an
XML file via cart chemistry xml and cover gaseous substances participating in chemical
reactions. Passive comprises all gaseous, liquid and solid tracers that are only participating
in transport processes. These are specified with the XML file cart passive xml. With the
following example XML file, two passive tracers called trPASS1 and trPASS2 are defined:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE tracers SYSTEM "tracers.dtd">

<tracers>

<passive id="trPASS1">

<transport type="char">stdaero</transport>

<unit type="char">kg kg-1</unit>

</passive>

<passive id="trPASS2">

<transport type="char">stdaero</transport>

<unit type="char">kg kg-1</unit>

</passive>

</tracers>

Additionally, each tracer gets two different meta data. Firstly, transport defines a template
of horizontal and vertical advection schemes and flux limiters, in this example the template
stdaero is used. A description of available transport templates is given below. Secondly, a
unit is specified, which will also be added as meta data to any output of the tracer. Note,
that the type of meta data has to be specified. In this example, both meta data are of
type character (”char”). For other meta data you could also choose integer (”int”) or real
(”real”).

Passive Tracers

For passive tracers, the only required meta data is unit (char). You can find an exam-
ple for the passive tracer XML file at the runctrl examples/xml ctrl folder named
tracers passive.xml.

Chemical Tracers

For chemical tracers, the only required meta data is unit (char). Usually, mol weight
(molecular weight, real) is also needed, although it is technically not required. You can
find an example for the chemical tracer XML file at the runctrl examples/xml ctrl

folder named tracers chemtracer.xml.
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Aerosol Tracers

For aerosol tracers, there is a list of necessary meta data specifications: the meta data unit
(char), moment (int), mode (char), sol (solubility, real), rho (density, real) and mol weight
(molecular weight, real) are required. You can find an example for the aerosol tracer XML
file at the runctrl examples/xml ctrl folder named tracers aerosol.xml.

Available Transport Templates

Currently, there are three different transport templates available: off, stdaero and
stdchem. These templates avoid the necessity to add a tracer advection scheme and
flux limiter for each single tracer in the namelist. Hence, the values of the namelist para-
meters ihadv tracer, ivadv tracer, itype hlimit and itype vlimit are overwritten
by the template. Specific information concerning the advection schemes mentioned in the
following can be found in Zängl et al. (2014)

Specifying off, all advective transport for this tracer is turned off (i.e. ihadv tracer and
ivadv tracer are set to 0).

The transport template stdaero uses a combination of Miura and Miura with subcy-
cling for the horizontal advection (i.e. ihadv tracer = 22), 3rd order piecewise parabolic
method handling CFL >1 for vertical advection (i.e. ivadv tracer = 3) in combina-
tion with monotonous flux limiters (i.e. itype hlimit = 4 and itype vlimit = 4). This
means that the conservation of linear correlations is guaranteed which is important for
modal aerosol with prognostic mass and number and diagnostic diameter. By this, the
diameter of aerosol does not change due to transport.

The transport template stdchem uses the same advection schemes as stdaero (i.e.
ihadv tracer = 22 and ivadv tracer = 3). However, the considerably faster positive
definite flux limiters are used (i.e. itype hlimit = 3 and itype vlimit = 2). By this,
the mass is still conserved. However, the conservation of linear correlations is traded for a
faster computation of the advection.

As you might have noticed in the previous section, the choice of a transport template is
not required at the tracer definition. If no transport template is chosen, stdaero is used
as default template.

8.4.4. Modes Definition with XML Files

Similar to the previously described tracer definition with XML files, aerosol modes
are also defined with XML files. The according namelist parameter specifying the
XML file is called cart modes xml. An example file modes.xml is provided in the
runctrl examples/xml ctrl folder. The definition of a mode is done as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE modes SYSTEM "modes.dtd">
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<modes>

<aerosol id="seasa">

<kind type="char">2mom</kind>

<d_gn type="real">0.200E-6</d_gn>

<d_gm type="real">0.690E-6</d_gm>

<sigma_g type="real">1.900E+0</sigma_g>

<rho type="real">2.200E+3</rho>

</aerosol>

</modes>

In this example, a mode called seasa is defined with 2 prognostic moments (2mom). The
initial number and mass diameters (d gn and d gm) as well as the geometric standard
deviation (sigma g) and density (rho) are specified. For an aerosol tracer, that shall be
associated to this mode, the meta data mode has to be set to seasa at the tracer defini-
tion (see previous section). In general, all available modes are listed in the example file
modes.xml. Hence, it is highly recommended to adapt this file according to your simulation
setup.

8.4.5. Point Source Module: pntSrc

ICON-ART provides a module which adds emissions from point sources to existing tracers.
The namelist switches associated to this module are lart passive, lart pntSrc and
cart pntSrc xml (see Section 8.4.2).

The prerequisite is that you have added a passive tracer via an XML file using the namelist
parameter cart passive xml. Starting from this point, point sources can be added using
an XML file specified via cart pntSrc xml. Additionally, you have to set lart passive

and lart pntSrc to .TRUE.. Inside the XML file specified via cart pntSrc xml, you can
add point sources following the subsequent example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE tracers SYSTEM "pntSrc.dtd">

<sources>

<pntSrc id="RNDFACTORY">

<substance type="char">testtr</substance>

<lon type="real">8.00</lon>

<lat type="real">48.00</lat>

<source_strength type="real">1.0</source_strength>

<height type="real">10.</height>

<unit type="char">kg s-1</unit>

</pntSrc>

</sources>

The options you can specify here have the following meaning:
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• pntSrc id: The name of the point source. This information is actually not used in
the ICON-ART code and serves only for a better readability of the XML file. Hence,
also multiple point sources with the same id are technically allowed.

• substance: This is the name of the substance, the point source emission is added
to. Here you have to specify the very same name of the tracer that you have specified
in the cart passive xml file.

• lon: Geographical longitude of the point source in degrees north.

• lat: Geographical latitude of the point source in degrees east.

• source strength: The source strength of the point source in the unit specified
below.

• height: The height of the point source in meters above ground.

• unit: The unit of the source strength. Note, that currently every unit different from
kg s-1 will lead to a model abort, as no unit conversion is implemented so far.

Via the XML file you can also specify multiple point sources. By this, you can either add
point sources to different tracers or specifying mutiple source for a single tracer with for
example differing source strenghts.

8.4.6. Volcanic Ash Control

If volcanic eruptions should be considered the switch iart volcano has to be set. For
the 1-moment description of volcanic ash, i.e. six monodisperse size bins for the number
concentrations, the integer value is 1. For the 2-moment description where 3 lognormal
modes are used, the switch has to be set to 2.
Further input is necessary to define the appropriate volcano(s):

• volcano list whatyouwant.txt has to contain information for the initializa-
tion of each volcano. The path including filename has to be set in the
namelist (cart volcano file). The line(s) for the volcano(s) of interest can
be copied from the file of2009-1133 table3 EDITED HISTORICAL.txt in the
runctrl examples/emiss ctrl folder. In Figure 8.1 an example is given. The first
column contains an ID of the volcano which is not read but needed due to format
specifications. The next column contains the name of the volcano. It is followed
by information on its location. There the correct longitude and latitude must be
present. Afterwards information on the volcano type is given.

Figure 8.1.: Example for the content of volcano list name.txt.

With this setup ICON-ART performs a simulation with the standard parameters for the
respective volcano type.
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8.5. Output

In principle, output of ICON-ART variables works the same way as for ICON variables.
The following five quantities of the output have to be specified:

• The time interval between two model outputs.

• The name of the output file.

• The name of the variable(s) and/or variable group(s).

• The type of vertical output grid.

• The type of horizontal output grid.

In general, the output of all (prognostic) tracers defined in the different XML
files (passive, chemistry, aerosol) is possible. Additionally, several diagnostic output
variables have been added in ICON-ART. These are listed in table 8.6.

There is an option to obtain all variables belonging to a certain group without having
to specifying all of them. The output variables that are associated to this group will be
written. Available output groups are: ART AERO VOLC1, ART AERO RADIO2, ART AERO DUST3,
ART AERO SEAS4, ART CHEMTRACER 5 and ART PASSIVE6. As the names indicate, these
groups contain variables associated to 1volcanic ash aerosol, 2radioactive particles,
3mineral dust aerosol, 4sea salt aerosol, 5chemical tracer and 6 passive tracer.

Table 8.6.: Selected list of available diagnostic output fields for aerosol.

Variable Associated
namelist switch

Description Groups

seasa diam

seasb diam

seasc diam

iart seasalt = 1

lart diag out

= .true.

Median diameter of sea salt
mode A, B, C respectively

ART AERO
SEAS

asha diam

ashb diam

ashc diam

iart volcano = 2

lart diag out

= .true.

Median diameter of vol-
canic ash mode A, B, C re-
spectively

ART AERO
VOLC

tau volc 340nm

tau volc 380nm

tau volc 440nm

tau volc 500nm

tau volc 550nm

tau volc 675nm

tau volc 870nm

tau volc 1020nm

tau volc 1064nm

iart volcano = 2

lart diag out

= .true.

Volcanic ash optical depth
at the wavelength indi-
cated by the name

ART AERO
VOLC

ash total mc iart volcano = 2

lart diag out

= .true.

Total concentration of vol-
canic ash in column

ART AERO
VOLC
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8.6. Exercises

In order to start with the exercises, you have to copy and unpack the ART code inside
your ICON source directory as described in section 8.3.

You will find the ART code at:
/e/uwork/trng024/packages/ART-v2.1.00.tar.gz.
Folders with the input data for all ART exercises can be found at:
/e/uwork/trng024/packages/ART-INPUT.

After you have copied the source code, you have to install ICON-ART. For this purpose,
proceed as described in Section 8.3. After a successful compilation of ICON-ART, you can
start with the experiments, that were prepared for this purpose:

Point Sources in ICON-ART LAM

EX 8.1

In this exercise, you will learn to add your own tracers with emissions from point
sources. This exercise makes use of the same setup for ICON-LAM as you have
already used in the Ex. 5.1 of Chapter 5. You are free to choose the tracer(s) to
transport and the location of the point source(s).

In order to perform the simulation, you have to do the following steps:

• You will find a copy of the runscript used in the previous ICON-LAM test case
inside $ARTDIR/runctrl examples/run scripts called
exp.art.trng17.case1.pntSrc.

• Edit the run script according to the namelist parameters you find in
Section 8.4. You will find a ? at all places where you have to edit something.

• Create the XML files that are needed to define tracers (see section 8.4.3) and
point sources (see section 8.4.5).

• Submit the job.

• Visualize your results using ncview.

Very Short-lived Substances

EX 8.2

Biogenic emitted Very Short-lived Substances (VSLS) have a short chemical lifetime
in the atmosphere compared to tropospheric transport timescales. As the ocean is
the main source of the most prominent VSLS, bromoform (CHBr3) and
dibromomethane (CH2Br2), this leads to large concentration gradients in the
troposphere. The tropospheric depletion of CHBr3 is mainly due to photolysis,
whereas for CH2Br2 the loss is dominated by oxidation by the hydroxyl radical
(OH) both contributing to the atmospheric inorganic bromine (Bry) budget. Once
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released, active bromine radicals play a significant role in tropospheric as well as
stratospheric chemistry as they are in particular involved in ozone destroying
catalytic cycles. Although the bromine budget in the stratosphere is dominated by
the release of Bry from long-lived source gases (e.g. halons) which is relatively well
understood the contribution of biogenic VSLS to stratospheric bromine is still
uncertain.

In this exercise the fast upward transport of both VSLS from the lower boundary
into the upper troposphere / lower stratosphere (UTLS) due to the super-typhoon
Haiyan will be simulated.

In order to perform the simulation, you have to do the following steps:

• Inside the ART-INPUT folder you will find a folder called CASE2-VSLS
containing all input data required for this test case.

• Inside $ARTDIR/runctrl examples/run scripts you will find the run script
for this test case called exp.art.trng17.case2.vsls. Edit the run script
according to the namelist parameters you find in Section 8.4. You will find a ?
at all places where you have to edit something.

• Create the XML file that is needed to define tracers (see section 8.4.3). For
this configuration, you will have to add tracers for CHBr3 and CH2Br2.

• Don’t forget to modify your output namelist accordingly.

• Submit the job.

• Visualize your results using ncview.

Volcano Eruption

EX 8.3

The eruption of a volcano can have a significant radiative impact as well as an
impact on air traffic. In this example, you will simulate the dispersion of volcanic
ash particles. Within ICON-ART, you have the choice of treating volcanic ash as
monodisperse tracers or with prognostic mass and number (i.e. 2-moment aerosol).
In this example, we will make use of the 2-moment description. In order to perform
the simulation, you have to do the following steps:

• Inside the ART-INPUT folder you will find a folder called CASE3-VOLC
containing all input data required for this test case.

• Inside $ARTDIR/runctrl examples/run scripts you will find the run script
for this test case called exp.art.trng17.case3.volc. Edit the run script
according to the namelist parameters you find in Section 8.4. You will find a ?
at all places where you have to edit something. For cart volcano file, you
can use the file ART-INPUT/CASE2-VOLC/volcano list Eyjafjoell.txt.
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• Create the XML file that is needed to define tracers (see section 8.4.3). You
also have to create an XML file specifying the aerosol modes in the simulation
(see section 8.4.4). For the 2-moment description of volcanic ash, you will need
the modes asha, ashb and ashc and the according tracers.

• You can use the namelist switch lart diag out to obtain diagnostical
properties like aerosol optical depth and median diameters.

• Don’t forget to modify your output namelist accordingly.

• Submit the job.

• Visualize your results using ncview.

Sea Salt Aerosol

EX 8.4

Sea salt aerosol is one of the main contributors to natural atmospheric aerosol.
With its high hygroscopicity it is a very efficient cloud condensation nuclei (CCN).
Within ICON-ART, sea salt aerosol is described as a log-normally distributed
aerosol in three modes with prognostic mass mixing ratios and prognostic number
mixing ratios. This simulation includes also a nested domain covering Europe and
North Africa with a higher spatial resolution. In order to perform the simulation,
you have to do the following steps:

• Inside the ART-INPUT folder you will find a folder called CASE4-SEAS
containing all input data required for this test case.

• Inside $ARTDIR/runctrl examples/run scripts you will find the run script
for this test case called exp.art.trng17.case4.seas. Edit the run script
according to the namelist parameters you find in section 8.4. You will find a ?
at all places where you have to edit something.

• Create the XML file that is needed to define tracers (see section 8.4.3). You
also have to create an XML file specifying the aerosol modes in the simulation
(see section 8.4.4). For the 2-moment description of sea salt, you will need the
modes seasa, seasb and seasc and the according tracers.

• Don’t forget to modify your output namelist accordingly.

• Submit the job.

• Visualize your results using ncview.
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9. ICON’s Data Assimilation System

In this chapter you will get to know basic components of the ICON data assimilation
system. It consists of a whole collection of programs and modules both for the atmospheric
variables of the model as well as for soil, snow, ice and sea surface, all collected into the
Data Assimilation Coding Environment (DACE).

9.1. Data Assimilation

Numerical weather prediction (NWP) is an initial value problem. The ability to make a
skillful forecast heavily depends on an accurate estimate of the present atmospheric state,
known as analysis. In general, an analysis is generated by combining, in an optimal way,
all available observations with a short term forecast of a general circulation model (e.g.
ICON).

Stated in a more abstract way, the basic idea of data assimilation is to fit model states x to
observations y. Usually, we do not observe model quantities directly or not at the model
grid points. Here, we work with observation operators H which take a model state and
calculate a simulated observation y = H(x). In terms of software, these model opera-
tors can be seen as particular modules, which operate on the ICON model states. Their
output is usually written into so-called feedback files, which contain both the real obser-
vation ymeas with all its meta data (descriptions, positioning, further information) as well
as the simulated observation y = H(x).

However, data assimilation cannot be treated at one point in time only. The information
passed on from the past is a crucial ingredient for any data assimilation scheme. Thus,
cycling is an important part of data assimilation. It means that we

1. Carry out the core data assimilation component to calculate the so-called analy-
sis x(a), i.e. a state which best fits previous information and the observations y,

2. Propagate the analysis x
(a)
k to the next analysis time tk+1. Here, it is called first

guess or background x
(b)
k+1.

3. Carry out the next analysis by running the core data assimilation component, gen-

erating x
(a)
k+1, then cycling the steps.

See Figure 9.1 for a schematic of the basic assimilation process.

9.1.1. Variational Data Assimilation

The basic 3D-VAR step minimizes the functional

µ(x) := ‖x− x(b)‖2B−1 + ‖y −H(x)‖2R−1 , (9.1)
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Figure 9.1.: Basic ICON cycling environment using 3DVar. Observations are merged with
a background field taken from a 3 h forecast (first guess) of the ICON model.
Courtesy of R. Potthast, DWD.

where B is the background state distribution covariance matrix which is making sure
that the information which is available at some place is distributed into its neighborhood
properly, and R is the error covariance matrix describing the error distribution for the
observations. The minimizer of (9.1) is given by

x(a) = x(b) +BHT (R+HBHT )−1(y −H(x(b)). (9.2)

The background or first guess x(b) is calculated from earlier analysis by propagating the
model from a state xk−1 at a previous analysis time tk−1 to the current analysis time tk. In
the data assimilation code, the minimization of (9.1) is not carried out explicitly by (9.2),
but by a conjugate gradient minimization scheme, i.e. in an iterative manner, first solving
the equation

(R+HBHT )z = y −H(x
(b)
k )

in observation space calculating zk at time tk, then projecting the solution back into model
space by

δxk = x
(a)
k − x

(b)
k = BHT zk.

We call δxk the analysis increment.

The background covariance matrix B is calculated from previous model runs by statistical
methods. We employ the so-called NMC method initially developed by the US weather
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bureau. The matrix B thus contains statistical information about the relationship between
different variables of the model, which is used in each of the assimilation steps.

9.1.2. Ensemble Kalman Filter

To obtain a better distribution of the information given by observations, modern data as-
similation algorithms employ a dynamical estimator for the covariance matrix (B-matrix).
Given an ensemble of states x(1), ..., x(L), the standard stochastic covariance estimator cal-
culates an estimate for the B-matrix by

B =
1

L− 1

L∑
`=1

(x
(`)
k − xk)(x

(`)
k − xk)T , (9.3)

where x denotes the mean defined by

xk =
1

L

L∑
`=1

x
(`)
k , k ∈ N.

This is leading us to the Ensemble Kalman Filter (EnKF), where an ensemble is employed
for data assimilation and the covariance is estimated by (9.3). Here, we use the name
EnKF (ensemble Kalman filter) as a generic name for all methods based on the above
idea.

In principle, the EnKF carries out cycling as introduced above, just that the propagation

step carries out propagation of a whole ensemble of L atmospheric states x
(a,`)
k from time tk

to time tk+1, and the analysis step has to generate L new analysis members, called the
analysis ensemble based on the first guess or background ensemble x(b,`), ` = 1, ..., L.

Usually, the analysis is carried out in observation space, where a transformation is carried
out. Also, working with a low number of ensemble members as it is necessary for large-scale
data assimilation problems, we need to suppress spurious correlations which arise from a
naive application of (9.3). This technique is known as localization, and the combined
transform and localization method is called localized ensemble transform Kalman filter
(LETKF), first suggested by Hunt et al. (2007).

The DWD data assimilation coding environment (DACE) provides a state-of-the-art im-
plementation of the LETKF which is equipped with several important ingredients such
as different types of covariance inflation. These are needed to properly take care of the
modeling error. The original Kalman filter itself does not know what error the model has
and thus by default under-estimates this error, which is counter-acted by a collection of
tools.

9.1.3. Hybrid Data Assimilation

The combination of variational and ensemble methods provides many possibilities to fur-
ther improve the state estimation of data assimilation. Based on the ensemble Kalman
filter LETKF the data assimilation coding environment provides a hybrid system EnVAR,
the ensemble variational data assimilation.
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The basic idea of EnVAR is to use the dynamical flow dependent ensemble covariance
matrix B as a part of the three-dimensional variational assimilation. Here, localization
is a crucial issue, since in the LETKF we localize in observation space, but 3D-VAR
employs B in state space. Localization is carried out by a diffusion-type approximation in
DACE.

The cycling for the EnVAR needs to cycle both the ensemble x(`), ` = 1, ..., L and one
deterministic state xdet. The resolution of the ensemble can be lower than the full deter-
ministic resolution. By default we currently employ a 40 km resolution for the ensemble
and a 13 km global resolution for the deterministic state. The ensemble B matrix is then
carried over to the finer deterministic resolution by interpolation. See Section 9.2 for more
details on the operational assimilation system at DWD.

9.1.4. Surface Analysis

DACE provides additional modules for Sea Surface Temperature (SST) analysis, Soil Mois-
ture Analysis (SMA) and snow analysis. Characteristic time scales of surface and soil
processes are typically larger than those of atmospheric processes. Therefore, it is often
sufficient to carry out surface analysis only every 6 to 24 hours.

9.2. Assimilation Cycle at DWD

The Assimilation cycle iterates the steps described in Section 9.1: updating a short-range
ICON forecast (first guess) using the observations available for that time window to gen-
erate an analysis, from which then a new updated first guess is started.

The core assimilation for atmospheric fields is based on a hybrid system (EnVar) as de-
scribed in Section 9.1.3. At every assimilation step (every 3 h) an LETKF is ran using an
ensemble of ICON first guesses. Currently, the ensemble consists of 40 members with a
horizontal resolution of 40 km and a 20 km nest over Europe. A convex linear combination
of the 3D-VAR climatological and the LETKF’s (flow dependent) covariance matrix is
then used to run a deterministic 3D-VAR analysis at 13 km horizontal resolution, which
is then used to initialize a deterministic main forecast at the same resolution.

In addition, the above mentioned surface modules are ran: Sea Surface Temperature (SST)
analysis, Soil Moisture Analysis (SMA) and snow analysis.

Note that for the ICON-EU nest no assimilation of atmospheric fields is conducted. The
analysis fields necessary to initialize the nest are interpolated from the underlying global
grid. A separate surface analysis, however, is conducted.

The input, output and processes involved in the assimilation cycle are briefly described
below:

Atmospheric analysis

Fields modified by the atmospheric analysis: (see Appendix C for a description of
each variable) t, p, u, v, qv.
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Grid(s) on which it is performed: global

Carried out at every assimilation time step (3 h) using the data assimilation algorithms
described in the previous sections.

Main input: First guess, observations, previous analysis error, online bias correction files.

Main output: Analysis of the atmospheric fields, analysis error, bias correction files,
feedback files with information on the observation, its departures to first guess and analysis.

The system can make use of the following observations: radiosondes, weather stations,
buoys, aircraft, ships, radio occultations, AMV winds and radiances. Available general
features of the module are variational quality control and (variational) online bias correc-
tion. Regarding EnKF specifics, different types of inflation techniques, relaxation to prior
perturbations and spread, adaptive localization, SST perturbations and SMA perturba-
tions are available.

Snow analysis

Fields modified by the snow analysis: (see Appendix C for a description of each
variable) freshsnow, h snow, rho snow, t snow, w i, w snow.

Grid(s) on which it is performed: global, EU-nest

Carried out at each assimilation time step (3 h).

Main input: SYNOP snow depth observations if the coverage is sufficient. If this is not
the case, more sources of information are looked for until the number of observations is high
enough, namely (and in this order), precipitation and 2m temperature, direct observations
(wwreports) and the NCEP external snow analysis.

Main output: Analysis of the snow fields.

Sea surface temperature analysis

Fields modified by the SST analysis: (see Appendix C for a description of each
variable) fr seaice, h ice, t ice, t so.

Grid(s) on which it is performed: global, EU-nest

Carried out only once a day, at 0 UTC.

Main input: NCEP analysis from the previous day (which uses satellite, buoy and ship
observations, to be used as a first guess), ship and buoy observations available since the
time of the NCEP analysis.

Main output: Sea surface temperature analysis and estimated error.
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Soil moisture analysis

Fields modified by the SMA analysis: (see Appendix C for a description of each
variable) w so.

Grid(s) on which it is performed: global, EU-nest

Carried out only once a day, at 0 UTC.

Main input: Background fields for relevant fields at every hour since last assimilation,
2m-temperature analysis (see below) to be used as observations.

Main output: Soil moisture analysis and estimated error.

2m-temperature analysis

Although carried out only at 0 UTC, it is ran for several time steps in between to provide
the output (2 m temperature) needed by the SMA analysis. Uses observations from SYNOP
stations on land and METAR information from airports.
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A. The Computer System at DWD

Available Platforms at DWD

The NWP exercises this week will be mainly carried out on the Cray XC 40 supercomputer
system at DWD. This system consists of several compute nodes with corresponding service
nodes. Some of the service nodes are the so-called login-nodes (with names xce00.dwd.de
and xce01.dwd.de), on which you can use training accounts.

• xce00, xce01:
These are the login nodes, which run a SUSE Linux Enterprise (SLES) Linux. The
nodes are used for compiling and linking, preparation of data, basic editing work
and visualization of meteorological fields. They are not used for running parallel
programs, but jobs can be submitted to the Cray XC 40 compute nodes.

• Cray XC 40:
The Cray XC 40 has 432 compute nodes, where each node is equipped with 2 Intel
Haswell processors with 12 cores (a second node partition with 544 Intel Broadwell
nodes will not be used in these exercises). Each node therefore has 24 computational
cores. These nodes cannot be accessed interactively, but only by batch jobs. Such
jobs can use up to 62 GByte of main memory per node, which is about 2.5 GByte
per core. For normal test jobs it should be enough to use 10-15 nodes (depending on
the chosen grid resolution).

There is a common filesystem across all nodes and every user has three different main
directories:

• /e/uhome/username ($HOME)
Directory for storing source code and scripts to run the model. This is a Panasas file
system suitable for many small files.

• /e/uwork/username ($WORK)
Directory for storing larger amounts of data.

• /e/uscratch/username ($SCRATCH)
Directory for storing very large amounts of data. For the $WORK and the $SCRATCH

filesystem there is a common quota for every user of 2.5 TByte.

The Batch System for the Cray XC 40

Jobs for the Cray XC 40 system have to be submitted with the batch system PBS. These
batch jobs may either be launched from the Linux cluster lce or from the XC 40 login
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nodes xce00/01. Together with the source code of the programs we provide some run
scripts in which all necessary batch-commands are set.

Here are the most important commands for working with the PBS:

qsub job name to submit a batch job to PBS. This is done in the run scripts.

qstat to query the status of all batch jobs on the XC 40. You can
see whether jobs are Q (queued) or R (running). You have
to submit jobs to the queue xc norm h.

qstat -u user to query the status of all your batch jobs on the machine.

qdel job nr@machine to cancel your job(s) from the batch queue of a machine.
The job nr is given by qstat -w.

In your run scripts, execution begins in your home directory, regardless of what directory
your script resides in or where you submitted the job from. You can use the cd command
to change to a different directory. The environment variable $PBS O WORKDIR makes it easy
to return to the directory from which you submitted the job:

cd $PBS_O_WORKDIR
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B. Troubleshooting for the ICON Model

When you work with the ICON software package, you can have a lot of trouble. Some of
the problems are due to imperfect (or even missing) documentation, others are caused by
program bugs. We apologize right now for any inconvenience this may cause. But there
are also troubles resulting from compiler bugs or hardware problems.

In the following, we want to describe some problems that can occur during the single
phases you are going through when installing and running the model. If possible, we also
want to give some hints for the solution.

Compiling and Linking

These are the most common difficulties when compiling and linking the software:

• Failing compilation process due to syntax errors.
The ICON code requires compiler support for a rather recent version of the Fortran
programming language. A Fortran 2003 compliant compiler is necessary. Please make
also sure that a compatible compiler for the C99 routines in the package is available.
Both components, the Fortran parts and the C parts use a source preprocessor.
Please note that due to the complex structure of the source code there may oc-
cur (rare) cases of compiler bugs. There may be even compiler bugs that manifest
themselves in internal compiler errors or run-time failures. In particular, the Cray
Fortran compiler versions 8.1.9 < version < 8.3.0 are known to fail for the ICON
model code.

• Failing configuration or linking process due to missing libraries.
The ICON model code requires an installation of the NetCDF library and the GRIB-
API library. Furthermore, binaries for distributed-memory parallel runs require the
MPI library. If problems occur during the linking process, check the prerequisites
that have been outlined in Section 1.2.1. If the configuration still fails, though all
three libraries are available, take a look at the text file config.log that is created
during the configuration process. This technical log file may contain hints on which
particular library has been found missing.

• No pre-defined configuration for your platform is available.
Inside the config directory, different machine dependent configurations are stored
within the configuration files. To add a specific compiler or change your compiler
flags, you have to enter the config/mh-OS according to your operating system OS.
You can find a description of how to use and set up such configuration files in the
ICON user manual, cf. Zängl et al. (2014).
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Troubleshooting in NWP Mode

What to Do If the DWD ICON Tools Fail?

• IFS2ICON: Check the data files retrieved from the ECMWF MARS database. All
fields that are defined in your iconremap namelist settings must be contained in this
input data file. For GRIB1 input data, provide the correct field parameter with the
namelist parameter code.

• Test, if the computational resources, i. e. memory and the number of processors,
are sufficient to run the model. Otherwise change the resource settings in your batch
queue script. If the ICON tools are run sequentially or in shared-memory mode (with
OpenMP, but without MPI), consider running iconremap in distributed memory
mode with MPI. The ICON Tools themselves contain example run scripts with re-
source setups and the ICON Tools documentation provides information on OpenMP
environment variables.

• If the cause of the error still does not become clear, you may increase model output
verbosity by setting the command-line options -v, -vv, -vvv etc.

• Stop right there, and don’t move. Speak to the bear in a low, calm voice, and slowly
raise your arms up above your head. Clearly, you should try to leave now. Do it
slowly and go back from whence you came. Don’t cross the path of the bear (or any
cubs, if present).

What to Do If the ICON Model Run Fails?

• The model aborts due to missing or incorrect input files.
ICON aborts during the setup phase, if any of the required input files has not been
found. Therefore, as a first step, check the filenames (and soft links) for the model
input files, cf. Section 2. Also make sure that the input data and grid files match. For
example, take a look at the global attributes number of grid used and uuidOfHGrid

of the global grid file. These values have to match the corresponding attributes of
the external parameters and initial data file.

• The model aborts due to incorrect namelist settings.
Of course, namelist settings may lead to a model crash. This may be the case if the
settings are incorrect with regards to content, but oftentimes a namelist setup can
also be syntactically wrong, e. g. when a different data type is expected by the model.
This happens especially if shell script variables are inserted into the namelists by the
batch queueing script. Therefore, check the namelist settings for obvious technical
errors:
First of all, the run scripts in this tutorial create a file NAMELIST NWP which con-
tains all user-defined namelist parameters, together with the substituted shell script
variables. Furthermore, during each ICON run, the file nml.atmo.log is created au-
tomatically, which contains all namelist parameters, including the default settings
that have not been touched by the user settings. Please note that there is a small
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caveat: Defaults defined in the ICON code after the namelist read-in are not moni-
tored.
Finally, your namelist settings may have been specified w.r.t. a former version of
ICON. Then, there may be the case that certain parameters have been declared dep-
recated. Take a look at the namelist documentation doc/Namelist overview.pdf

which comes with your version of the ICON model code. This document contains a
section on incompatible changes, and may provide some useful hints.

• The model aborts due to lack of resources.
Please check, if the computational resources, i. e. memory and the number of pro-
cessors, are sufficient to run the model. Otherwise change the resource settings in
your batch queue script. If the ICON model is run sequentially or in shared-memory
mode (with OpenMP, but without MPI), consider running the model in distributed
memory mode with MPI.

• If the cause of the error still does not become clear, you may increase the model
output verbosity, see the namelist parameter msg level in the namelist run nml.

There are surely many more reasons for problems and errors, whose discussion goes beyond
the scope of this tutorial. It really gets troublesome when a program aborts and writes
core files. Then you will need some computer tools (like a debugger) to investigate the
problem. If you cannot figure out what the reason for your problem is we can try to give
some support.
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C. Table of ICON Output Variables

The following table contains the NWP variables available for output1. Please note that
the field names are following an ICON-internal nomenclature, see Section 4.3 for details.

By ”ICON-internal” variable names, we denote those field names that are pro-
vided as the string argument name to the subroutine calls CALL add_var(...) and
CALL add_ref(...) inside the ICON source code. These subroutine calls have the pur-
pose to register new variables, to allocate the necessary memory, and to set the meta-data
for these variables.

Therefore, if you are interested in the model output of a certain variable and if this
variable is not listed in the table below, you may search for the corresponding call to
add_var/add_ref in the source code instead.

Variable name Description

acdnc cloud droplet number concentration

adrag u grid zonal resolved surface stress mean since model start

adrag v grid meridional resolved surface stress mean since model start

alb dif Shortwave albedo for diffuse radiation

albdif Shortwave albedo for diffuse radiation

albni dif Near IR albedo for diffuse radiation

albnirdif Near IR albedo for diffuse radiation

albnirdir Near IR albedo for direct radiation

albuv dif UV visible albedo for diffuse radiation

albvisdif UV visible albedo for diffuse radiation

albvisdir UV visible albedo for direct radiation

alhfl bs latent heat flux from bare mean since model start

alhfl pl latent heat flux from plantmean since model start

alhfl s surface latent heat flux mean since model start

aqhfl s surface moisture flux mean since model start

ashfl s surface sensible heat flux mean since model start

asob s Surface net solar radiation mean since model start

asob t TOA net solar radiation mean since model start

asodifd s Surface down solar diff. rad. mean since model start

asodifu s Surface up solar diff. rad. mean since model start

asodird s Surface down solar direct rad.mean since model start

asod t Top down solar radiation mean since model start

asou t Top up solar radiation mean since model start

astr u sso zonal sso surface stress mean since model start

astr v sso meridional sso surface stress mean since model start

aswflx par sfc Downward PAR flux mean since model start

Continued on next page
1The Table C.1 in this Appendix is based on the revision state e5ae09fe (2017-02-06).
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Table C.1 – Continued from previous page

Variable name Description

athb s surface net thermal radiation mean since model start

athb t TOA net thermal radiation mean since model start

athd s Surface down thermal radiationmean since model start

athu s Surface up thermal radiation mean since model start

aumfl s u-momentum flux flux at sumean since model start

avg qc tci specific cloud water content (diagnostic) avg

avg qi tci specific cloud ice content (diagnostic) avg

avg qv column integrated water vapour (diagnostic) avg

avmfl s v-momentum flux flux at sumean since model start

aw area weights for regular lat-lon grid

cape conv avail pot energy

cape ml cape of mean surface layer parcel

cin ml convective inhibition of mean surface layer parcel

clc cloud cover

clch high level clouds

clcl low level clouds

clcm mid level clouds

clct avg total cloud cover time avg

clct mod modified total cloud cover for media

clct total cloud cover

cldepth modified cloud depth for media

cloud num cloud droplet number concentration

con gust convective contribution to wind gust

con prec rate avg convective precip rate, time average

cosmu0 Cosine of solar zenith angle

c t lk shape factor (temp. profile in lake thermocline)

ddt exner phy Exner pressure physical tendency

ddt qc conv convective tendency of specific cloud water

ddt qc turb turbulence tendency of specific cloud water

ddt qi conv convective tendency of specific cloud ice

ddt qi turb turbulence tendency of specific cloud ice

ddt qv conv convective tendency of specific humidity

ddt qv turb turbulence tendency of specific humidity

ddt temp drag sso + gwdrag temperature tendency

ddt temp dyn dynamical temperature tendency

ddt temp pconv convective temperature tendency

ddt temp radlw long wave radiative temperature tendency

ddt temp radsw short wave radiative temperature tendency

ddt temp turb turbulence temperature tendency

ddt tke hsh TKE tendency horizonzal shear production

ddt tke pconv TKE tendency due to sub-grid scale convection

ddt tke tendency of turbulent velocity scale

ddt u gwd GWD tendency of zonal wind

ddt u pconv convective tendency of zonal wind

ddt u sso sso tendency of zonal wind

ddt u turb turbulence tendency of zonal wind

ddt v gwd GWD tendency of meridional wind

Continued on next page
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Table C.1 – Continued from previous page

Variable name Description

ddt vn phy normal wind physical tendency

ddt v pconv convective tendency of meridional wind

ddt v sso sso tendency of meridional wind

ddt v turb turbulence tendency of meridional wind

depth lk lake depth

dgeopot mc geopotential at cell center

div Divergence

div ic divergence at half levels

dp bs lk depth of thermally active layer of bot. sediments.

dpres mc pressure thickness

drag u grid zonal resolved surface stress

drag v grid meridional resolved surface stress

dtheta v ic ubc potential temperature at child upper boundary

dvn ie int normal velocity at parent interface level

dvn ie ubc normal velocity at child upper boundary

dwdx Zonal gradient of vertical wind

dwdy Meridional gradient of vertical wind

dw ubc vertical velocity at child upper boundary

dyn gust dynamical gust

eai (evaporative) earth area index

emis rad longwave surface emissivity

exner dyn incr Exner dynamics increment

exner Exner pressure

exner incr Exner increment from DA

exner pr Exner perturbation pressure

exner ref mc Reference atmosphere field Exner

fetch lk wind fetch over lake

fis Geopotential (s)

for d Fraction of deciduous forest

freshsnow weighted indicator for age of snow in top of snow layer

fr glac Fraction glacier

fr lake fraction lake

fr land Fraction land

fr seaice fraction of sea ice

gamso lk attenuation coefficient of lake water with respect to sol. rad.

geopot agl geopotential above groundlevel at cell center

geopot agl ifc geopotential above groundlevel at cell center

geopot geopotential at full level cell centre

grad topo gradient of geometric height of the earths surface above sea level

grf tend mflx normal mass flux tendency (grid refinement)

grf tend rho density tendency (grid refinement)

grf tend thv virtual potential temperature tendency (grid refinement)

grf tend vn normal wind tendency (grid refinement)

grf tend w vertical wind tendency (grid refinement)

gsp prec rate avg gridscale precip rate, time average

gust10 gust at 10 m

gz0 roughness length

Continued on next page
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Table C.1 – Continued from previous page

Variable name Description

h b1 lk thickness of the upper layer of the sediments

hbas con height of convective cloud base

hdef ic Deformation

h ice sea/lake-ice depth

h ml lk mixed-layer thickness

hmo3 height of O3 maximum (Pa)

h snow lk depth of snow on lake ice

h snow si depth of snow on sea ice

h snow weighted snow depth

htop con height of convective cloud top

htop dc height of top of dry convection

hzerocl height of 0 deg C level

k400 level index corresponding to the HAG of the 400hPa level

k800 level index corresponding to the HAG of the 800hPa level

k850 level index corresponding to the HAG of the 850hPa level

k950 level index corresponding to the HAG of the 950hPa level

ktype type of convection

lai Leaf Area Index

lc class t xx tile point land cover class

lhfl bs latent heat flux from bare soil

lhfl pl latent heat flux from plants

lhfl s surface latent heat flux

lwflxall longwave net flux

mask mtnpoints g Mask field for mountain points

mask mtnpoints Mask field for mountain points

mass fl e horizontal mass flux at edges

mass fl e sv storage field for horizontal mass flux at edges

ndvi max NDVI yearly maximum

ndviratio (monthly) proportion of actual value/maximum NDVI (at init time)

o3 ozone mixing ratio

omega vertical velocity

omega z vertical vorticity

plcov Plant covering degree in the vegetation phase

pres ifc pressure at half level

pres msl mean sea level pressure

pres Pressure

pres sfc surface pressure

qc specific cloud water content

qc specific cloud water content

qhfl s surface moisture flux

qi specific cloud ice content

qi specific cloud ice content

qr rain mixing ratio

qr rain mixing ratio

qs snow mixing ratio

Continued on next page
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Table C.1 – Continued from previous page

Variable name Description

qs snow mixing ratio

qv 2m specific water vapor content in 2m

qv incr specific humidity increment from DA

qv Specific humidity

qv Specific humidity

qv s specific humidity at the surface

rain con convective rain

rain con rate 3d 3d convective rain rate

rain con rate convective rain rate

rain gsp gridscale rain

rain gsp rate gridscale rain rate

rain upd rain in updroughts

rcld standard deviation of the saturation deficit

rh 2m relative humidity in 2m

rho density

rho ic density at half level

rho incr density increment from DA

rho ref mc Reference atmosphere field density

rho ref me Reference atmosphere field density

rho snow weighted snow density

rh relative humidity

rootdp root depth of vegetation

rsmin Minimal stomata resistence

rstom stomatal resistance

runoff g weighted soil water runoff; sum over forecast

runoff s weighted surface water runoff; sum over forecast

sai surface area index

shfl s surface sensible heat flux

snow con convective snow

snow con rate 3d 3d convective snow rate

snow con rate convective snow rate

snowfrac lc snow-cover fraction

snowfrac lc t xx tile-based snow-cover fraction

snowfrac snow-cover fraction

snowfrac t xx local tile-based snow-cover fraction

snow gsp gridscale snow

snow gsp rate gridscale snow rate

snowlmt Height of snow fall limit above MSL

sob s shortwave net flux at surface

sob t shortwave net flux at TOA

sodifd s shortwave diffuse downward flux at surface

sod t downward shortwave flux at TOA

soiltyp soil type

sou s shortwave upward flux at surface

sou t shortwave upward flux at TOA

sp 10m wind speed in 10m

sso gamma Anisotropy of sub-gridscale orography

Continued on next page
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Table C.1 – Continued from previous page

Variable name Description

sso sigma Slope of sub-gridscale orography

sso stdh raw Standard deviation of sub-grid scale orography

sso stdh Standard deviation of sub-grid scale orography

sso theta Angle of sub-gridscale orography

str u sso zonal sso surface stress

str v sso meridional sso surface stress

swflx par sfc downward photosynthetically active flux at surface

t 2m temperature in 2m

tai transpiration area index

t b1 lk temperature at the bottom of the upper layer of the sediments

t bot lk temperature at the water-bottom sediment interface

t bs lk clim. temp. at bottom of thermally active layer of sediments

tch turbulent transfer coefficients for heat

t cl CRU near surface temperature climatology

tcm turbulent transfer coefficients for momentum

td 2m dew-point in 2m

temp ifc temperature at half level

temp Temperature

tempv Virtual temperature

tfh factor of laminar transfer of scalars

tfm factor of laminar transfer of momentum

tfv laminar reduction factor for evaporation

t g weighted surface temperature

thb s longwave net flux at surface

theta ref ic Reference atmosphere field theta

theta ref mc Reference atmosphere field theta

theta ref me Reference atmosphere field theta

theta v ic virtual potential temperature at half levels

theta v virtual potential temperature

thu s longwave upward flux at surface

t ice sea/lake-ice temperature

tke turbulent kinetic energy

tkred sfc reduction factor for minimum diffusion coefficients

tkr turbulent reference surface diffusion coefficient

tkvh turbulent diffusion coefficients for heat

tkvm turbulent diffusion coefficients for momentum

tmax 2m Max 2m temperature

tmin 2m Min 2m temperature

t mnw lk mean temperature of the water column

topography c geometric height of the earths surface above sea level

tot prec rate avg total precip rate, time average

tot prec total precip

tot qc dia total specific cloud water content (diagnostic)

tot qi dia total specific cloud ice content (diagnostic)

tot qv dia total specific humidity (diagnostic)

tqc dia total column integrated cloud water (diagnostic)

tqc total column integrated cloud water

tqi dia total column integrated cloud ice (diagnostic)

Continued on next page
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Table C.1 – Continued from previous page

Variable name Description

tqi total column integrated cloud ice

tqr total column integrated rain

tqs total column integrated snow

tqv dia total column integrated water vapour (diagnostic)

tqv total column integrated water vapour

tracer vi avg01 tracer vi avg

tracer vi avg02 tracer vi avg

tracer vi avg03 tracer vi avg

trsolall shortwave net tranmissivity

t seasfc sea surface temperature

tsfc ref Reference surface temperature

tsfctrad surface temperature at trad

t snow lk temperature of snow on lake ice

t snow si temperature of snow on sea ice

t snow weighted temperature of the snow-surface

t so weighted soil temperature (main level)

t s weighted temperature of ground surface

tvh turbulent transfer velocity for heat

tvm turbulent transfer velocity for momentum

t wml lk mixed-layer temperature

u 10m zonal wind in 10m

umfl s u-momentum flux at the surface

u Zonal wind

v 10m meridional wind in 10m

vio3 vertically integrated ozone amount

v Meridional wind

vmfl s v-momentum flux at the surface

vn ie normal wind at half level

vn velocity normal to edge

vor Vorticity

vt tangential-component of wind

vwind expl wgt Explicit weight in vertical wind solver

vwind impl wgt Implicit weight in vertical wind solver

w concorr c contravariant vertical correction

w i t xx weighted water content of interception water

w i weighted water content of interception water

w snow t xx water equivalent of snow

w snow weighted water equivalent of snow

w so ice ice content

w so ice t xx ice content

w so total water content (ice + liquid water)

w so t xx total water content (ice + liquid water)

w Vertical velocity

ww significant weather

z ifc geometric height at half level center

z mc geometric height at full level center
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Index of Namelist Parameters

The following index contains only namelist parameters covered by this tutorial. Please
take a look at the document

icon-dev/doc/Namelist overview.pdf

for a complete list of available namelist parameters for the ICON model. ICON-ART
specific namelists are described in the ICON-ART documentation.

initicon nml (Namelist), 54

ana varnames map file, 53
art nml (Namelist), 114
atmo dyn grids, 47

bdy indexing depth, 16, 16

cart volcano file, 124

diffusion nml (Namelist), 43
dom, 57, 58
dt checkpoint, 88, 88, 89
dt checkpoint (Namelist), 91
dt conv, 51, 51
dt gwd, 51
dt iau, 55, 55, 56, 64
dt rad, 51, 51
dt restart, 88, 89
dt shift, 55, 55, 56, 64
dt sso, 51
dtime, 46, 65
dtime latbc, 73, 82
dwdana filename, 54, 54, 55, 64
dwdfg filename, 54, 54, 55, 64, 73, 82
dynamics grid filename, 44, 52, 53, 63, 67
dynamics nml (Namelist), 43
dynamics parent grid id, 45, 47, 52, 67

end datetime string, 51, 51, 63, 82, 89, 93
extpar filename, 52, 52, 64, 89
extpar nml (Namelist), 43, 52

filetype, 57, 57
flat height, 40

grid nml (Namelist), 39, 44, 45, 47, 52, 67,
71, 86, 87

gridgen nml (Namelist), 16, 17

h levels, 88
hbot qvsubstep, 85, 85, 86
hl varlist, 87, 87
htop moist proc, 85, 85, 86, 91, 93

i levels, 88
iart seasalt, 122
iart volcano, 122
iforcing, 42, 43, 47, 52, 63, 89
ifs2icon filename, 55, 89
ihadv tracer, 85
il varlist, 87, 88
in filename, 33
in grid filename, 31, 33
in type, 31
ini datetime string, 51, 51, 54, 55, 63, 82, 89
init mode, 53, 53–55, 64, 73, 73, 82, 89
initicon nml (Namelist), 53–55, 73
input field nml (Namelist), 27, 28, 31
inwp cldcover, 75
inwp convection, 75
inwp gscp, 75, 75, 78, 78
inwp gwd, 75
inwp radiation, 75
inwp sso, 75
inwp surface, 75
inwp turb, 75
io nml (Namelist), 57, 88
itopo, 43, 43, 47, 52, 63, 89
itype latbc, 72
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ivctype, 38, 40

l limited area, 71, 82
lart, 114
lart diag out, 122, 125
latbc boundary grid, 74, 82
latbc filename, 73, 73, 82
latbc path, 73, 73, 82
latbc varnames map file, 73, 73
ldynamics, 43, 47, 52, 63, 89
limarea nml (Namelist), 72–74
llake, 75
lnd nml (Namelist), 19
lread ana, 73, 82
lredgrid phys, 86, 95
lrestart, 88, 93
lseaice, 75
ltestcase, 42, 47, 52, 63, 89
ltimer, 61
ltransport, 43, 48, 52, 63, 89
lwrite parent, 17, 87

m levels, 57
master nml (Namelist), 54, 88
min lay thckn, 40, 40
ml varlist, 57, 57, 87
model base dir, 54

ncstorage file, 31
ndyn substeps, 49, 50, 65
nh test name, 43, 43, 47
nh testcase nml (Namelist), 37, 43, 48
nlev latbc, 73, 82
nonhydrostatic nml (Namelist), 38, 40, 43,

49, 85
nsteps, 46, 51, 93
ntiles, 19
num io procs, 58, 63, 89
num lev, 38, 40, 47, 67
num prefetch proc, 74
num restart procs, 58, 89
nwp phy nml (Namelist), 43, 51, 75, 78

out grid filename, 31
out type, 31
output, 56
output bounds, 57
output filename, 57
output nml (Namelist), 46, 48, 56–58, 87, 88

output nml dict, 57

p levels, 88
parallel nml (Namelist), 58, 74, 89
pl varlist, 87, 88

radiation grid filename, 52, 63, 87, 95
reg lat def, 88
reg lon def, 88
remap, 57, 88
remap nml (Namelist), 31
restart filename, 88, 88
run nml (Namelist), 38, 42, 43, 46, 47, 51,

52, 56, 61, 67, 88, 93, 114, 137

sleve nml (Namelist), 40
steps per file, 57

time nml (Namelist), 51, 89
timers level, 61
top height, 40
tracer inidist list, 48, 48
tracer names, 48, 48
transport nml (Namelist), 43, 48, 52, 85

var in mask, 28
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