
Using and programming ICON— a first introduction

S. Rast

sebastian.rast@mpimet.mpg.de

July 31, 2017

mailto:sebastian.rast@mpimet.mpg.de

2

.

Foreword

This course is a first introduction to the ICON (ICOsahedra Nonhydrostatic model) program
focussing on technical aspects of the atmospheric part using ECHAM physics. The first part
explains the compilation of ICON and performing model runs. The most important namelists
will be explained for the version using ECHAM physics. In the second part, the program code
of ICON will be explained. This part contains a survey of fortran techniques used in ICON
before the most important data structures and subprograms are explained. These are selected
to get the user of ICON acquainted with the introduction of a own namelist, the usage of 2d–
and 3d–fields including geographical coordinates, reading in data from netcdf files, the usage of
date and time variables, and the definition of new output streams.

This is a slightly improved version of a first draft used in the ICON course 2016. The author is
very grateful to many ideas by M. Giorgetta and the participants of this first course, in particular
T. Becker, M. Esch, S. Müller, and G. Zhou who all helped to reduce the number of mistakes
and to make this text more readable.

i

ii

Contents

1 Getting started with ICON 1

1.1 Source code of ICON . 2

1.2 Basic Compilation . 4

1.3 Model grid . 5

1.3.1 Horizontal grid . 5

1.3.2 Vertical grid . 10

1.4 Performing computer experiments with ICON . 11

1.4.1 Preparation of a computer experiment with ICON 11

1.4.2 Namelists for ICON . 12

1.4.3 Input data for ICON . 24

2 The code of ICON 27

2.1 Flowchart of ICON . 27

2.2 Survey of FORTRAN techniques . 30

2.2.1 Modules . 30

2.2.2 Derived types . 31

2.2.3 Recursive derived types . 33

2.2.4 Overloading of subprograms . 34

2.2.5 Recursive subprograms . 37

2.3 Modifying the ICON code . 37

2.3.1 Messages and error messages in ICON . 39

2.3.2 Introduction of your own namelist . 40

2.3.3 Representation of 2d– and 3d–fields in ICON, geographical coordinates . 43

2.3.4 Data structure containing physics and dynamics variables 47

2.3.5 Introduction of new processes into ECHAM physics 50

2.3.6 Usage of date and time variables . 54

2.3.7 Reading data from netcdf input files . 55

2.3.8 Defining new “streams” . 59

Bibliography . 69

List of listings . 73

iii

iv CONTENTS

.

Chapter 1

Getting started with ICON

The name ICON stands for ICOsahedral Nonhydrostatic model. It is in fact a collection of
models to compute the general circulation of the atmosphere and the ocean including a land
surface model. All these models can be used separately or in a coupled mode. Their common
ground is not only the fact that they share a common infrastructure e.g. in terms of input and
output, but also the fact that they are all based on a triangular grid derived from an icosahedron.
The models are all designed in a way that grid nesting can be programmed in order to achieve
a higher resolution in some regions. However, this is not the “standard” and may require some
programming effort. Distortion of a global grid in order to get a higher resolution in some regions
(and lower resolution in others) may also be applied. Even a model geometry that differs from
a sphere like a “torus” (this means a rectangle with doubly periodic boundary conditions for
being precise) is possible.

The icosahedron is a convex solid and consists of 20 equilateral triangles. The earth is repre-
sented by a perfect sphere that circumscribes the icosahedron. The original triangle faces of
this icosahedron projected on the circumscribed sphere will be triangulated by great circles.
Five triangles meet at the original icosahedron vertices, six at any other vertices. The resulting
grid is therefore irregular. This irregular grid will be optimzed by some so–called “spring dy-
namics”. The ICON model entirely relies on a calculation of all gradients in “gridpoint space”
meaning that all derivatives occurring in the dynamics equations are approximated directly on
the “icosahedral” grid. Why do we perform this paradigm change from spectral models like
the predecessor ECHAM to pure gridpoint models like ICON? There are several reasons —
numerical ones and computational ones. The biggest numerical advantage of the new grid is
the absence of the singularities of a longitude–latitude grid at the poles. Generally, the distance
between gridpoints of the ICON grid does not depend so much on the position on the globe
as for longitude–latitude grids. Computationally, the recent development of massive parallel
computers favors high resolution models with many gridpoints although the approximation of
derivatives is numerically tricky. On the other hand, spectral models need permanent transfor-
mation from grid point space to spectral space and vice versa that also becomes numerically
demanding when the resolution becomes really high (of the order of kilometres).

ICON is mainly written in FORTRAN90 with some small parts in C and consists of a parallel
code including elements of vectorization. The atmospheric part uses equations appropriate for
the description of nonhydrostatic flow and “physics” equations that describe turbulent and cloud
processes on various levels of detail: Equations for the “Large Eddy Model” (LEM), “Numerical
Weather Prediction” (NWP), and “ECHAM” physics also referred to as “Max Planck Institute
physics” which is particularly suited for climate simulations.

1

2 CHAPTER 1. GETTING STARTED WITH ICON

In this course, you will get acquainted with the technical aspects of ICON, in particular, you
will learn how to perform your own simulations and how you can analyse your results. In a
second part of the course, we will look into the code, learn something about the code structure,
the most important data structures and how to change the code.

The ICON model will be made available to the scientific community under a common license of
the Max Planck Institute for Meteorology (MPI–M) and the German Weather Service (DWD)
and it will be distributed over the homepage of the MPI–M.

The versioning of ICON is a bit complex and reflects the parallel development in several “flavors”
like “atmosphere”, “ocean”, and several more. There are four important branches tagging
versions that reached certain milestones: icon-aes (atmosphere in the earth system, mainly
echam physics in the atmosphere), icon-nwp (numerical weather prediction, mainly dynamics
and physics of the LEM and NWP configurations of the atmospheric model), icon-oes (ocean in
the earth system), icon-les (land in the earth system). All tags contain all model components,
but the latest tag of icon-aes may not contain the most recent developments of the ocean
physics although these are already included into the latest ocean-oes tag.

We won’t use a specific model tag of the icon-aes branch here, just a certain version of the
main icon-aes development branch. It is not suitable for scientific research since it was not
thoroughly evaluated with respect to its scientific quality. The ICON model will be provided on
the supercomputer mistral.dkrz.de in a tar–file

Listing 1.1: Archive file of the ICON model

mistral.dkrz.de:∼m218036/icon_course_2017/icon -aes.tar

For all practical exercises, we will work on the supercomputer mistral.dkrz.de that has more
than 100,000 CPU cores distributed over 3,300 nodes and about 54 Petabyte of disk space at
the Deutsches KlimaRechenZentrum (DKRZ), Hamburg. From your terminal, you access the
supercomputer by

ssh -X -l <course_account > mistral.dkrz.de
�� ��←↩

Go into the working directory of our ICON course, create a new directory named after your
course account, copy the model tar–file there, and unpack it:

cd /work/mh1049/icon_course/
�� ��←↩

mkdir <course_account >; cd <course_account >
�� ��←↩

cp ~m218036/icon_course_2017/icon -aes.tar .
�� ��←↩

tar xvf icon -aes.tar
�� ��←↩

The folder icon-aes will contain the model code and example scripts. We will discuss the
content of this folder next.

1.1 Source code of ICON

The directory icon-aes contains the following files and sub–directories (the sub–directories are
marked with a (d)):

(i) Compiling, running, testing

1.1. SOURCE CODE OF ICON 3

aclocal.m4: calls test of data type scripts (e.g. acinclude.mr)

cmake(d): scripts to locate important libraries and their include files

cmake.configure: configure file using cmake (does not work)

CMakeLists.txt: needed for cmake makefiles.

config(d): Configuration files for various computer platformes

configure: Script to create a specific makefile for compilation of icon on your actual
computer platform.

configure.ac: file to create configure script

data(d): contains input data for icon that either do not depend on model resolution or
are very special. The general rule is to store input data away from the code versioning
system. So, this directory should be used in exceptional cases only.

m4(d): contains a file testing the support of special pointers. Similar to the acinclude.m4
file

Makefile.in: Inputfile for generation of Makefile.

make runscripts: This script generates run scripts from run script templates. The reason
for this is that the call of the ICON executable needs initial files or restart files,
the actual call of the executable may depend on the platform, on the other hand,
the input files and namelist for a specific model configuration are different for each
experiment. The actions that are the same for every experiment are collected in
run/exec.iconrun, the specific setting for an experiment in other files run/exp.∗.
The script make runscripts creates a machine dependent, experiment specific run
script from these two components that is ready for submission.

README: Contains a short description of how to compile and run ICON.

README.xce: Description of compilation on CRAY

run: Example run scripts for important experiments like AMIP–type runs, aqua planet or
radiative convective equilibrium runs.

schedulers(d): ICON runs on various special platforms (not interesting for us)

scripts(d): scripts for special applications, like post– and preprocessing, doxygen docu-
mentation, the automatic test system buildbot and other purposes

target confmake.ksh: Script to configure and make ICON.

target database.ksh: Contains a list of “targets”, i.e. possible arguments to the config-
ure command.

(ii) Documentation

doc(d): contains model documentation. In particular there is a namelist overview
Namelist overview.pdf describing all input variables of icon and a subdirectory
userguide that contains icon user guide.pdf that will become the standard de-
scription of ICON in terms of user relevant information. This user guide contains
the namelist overview and the description of special model configuration like the
aqua planet or the radiative convective equilibrium configuration. In the user guide,
there is no description of potential output variables of the model configuration us-
ing ECHAM physics, data structures inside ICON, or programming concepts of the
ICON code. However, there is some information about the grid generation and other
useful information but it may be outdated.

LICENSE: Still a placeholder for the upcoming license.

4 CHAPTER 1. GETTING STARTED WITH ICON

(iii) Source code

blas(d): Basic Linear Algebra Subprograms is a collection of subprograms for basic vector
and matrix operations

externals(d): Contains source code that is used by ICON, but not really a part of ICON.
Examples are the mtime calendar package or the yac coupler used for grid interpola-
tions between ocean and atmosphere grids.

lapack(d): Linear Algebra PACKage contains subprograms for numerical linear algebra.

src(d): Source code of icon. The source code is organized in approximately 31 subdi-
rectories which may themselves contain subdirectories in special cases. It is often
difficult to find a certain module in the correct subdirectory because the structure is
rather complex. It is not an easy–to–understand categorization of the source code
files in “ocean”, “atmosphere”, “land”, for example. There are also many parts of
the code that were not tested for a while and may not work although they are still a
part of ICON.

support(d): Subprograms for file handling, input and output, computing time measure-
ments and other helper routines written in C.

vertical coord tables(d): List of A and B coefficients of σ–hybrid coordinates for cer-
tain vertical grids. These are not directly used by ICON.

1.2 Basic Compilation

Before any simulation with ICON can be started, the source code has to be translated into
an executable program by compilation. The compilation translates the human readable source
code into a machine–readable binary code. The binary code depends on the architecture of the
machine which is used, whether it is a “parallel machine” with several processecors executing
calculations for the same program or a “vector machine” that pipelines input to the computing
unit or a mixed architecture. We describe the compiling on mistral.dkrz.de. Go into the
main directory of the model (/work/mh1049/icon course 2017/<course account>/icon-aes)
and perform the following commands:

./ configure --with -fortran=intel

./ build_command
�� ��←↩

The first commando creates the Makefile that contains all commands for the compilation of the
model. The configure script makes use of the content of the config directory where information
about various computers is stored and uses the information of Makefile.in. On big computer
platforms, a variety of compilers in different versions is available and can be activated by the
module load command. Before the compilers can be used, you have to load them. In order
to avoid this step, you can call build command, a program generated during the configure

procedure. This script loads all necessary modules and launches the make process. You can use
several processors to compile the program in parallel. The -j n option to the make command
inside the script build command tells make to use n processors in the compilation (make -n n).
If no errors occur, the following executables are produced:

icon -aes/build/x86_64 -unknown -linux -gnu/bin/icon

icon -aes/build/x86_64 -unknown -linux -gnu/bin/grid_command

The first executable is the ICON simulation program for atmosphere and ocean circulation.
The second executable grid command is a program to generate the various grids based on an
icosahedron.

1.3. MODEL GRID 5

1.3 Model grid

1.3.1 Horizontal grid

The horizontal grid of ICON is based on the regular, convex icosahedron that is one of the
Platonic solids. It consists of 20 equilateral triangles and has 20 faces, 30 edges, and 12 vertices.
All 12 vertices are located on the surface of a sphere, the circumscribed sphere. Using the
icosahedron directly would lead to a grid with 20 grid cells only. But each of the faces can be
triangulated further to create a finer grid of many triangles. Fig. 1.1 represents an icosahedron
with one triangulated face in front.

In principle, there is the possibility to triangulate the triangular faces of the icosahedron until
the desired resolution is reached, to project the result onto the circumscribed sphere (or any
sphere sharing its centre with the centre of the icosahedron) in a second step, and to optimize
the resulting grid by some “spring dynamics” in a last step. In fact, this seems to be the
conceptually easiest method to construct a grid on the icosahedron. Another possibility would
be to triangulate the triangles of the icosahedron after they are projected onto the sphere by
the use of great circles (orthodromes). If necessary, optimization steps can be used after any of
these triangulation steps. This is the algorithm used by the grid generator of the ICON model.
However, the result after the optimization should be the same (except of numeric inaccuracies)
since the energy minimum searched by the spring dynamics should be unique if the icosahedron
symmetry is preserved. Nevertheless, no proof of this hypothesis is known to the author of
this script. We describe the first method here although the exact algorithm is different and the
status of a proof for the uniqueness of the result of the optimization is unknown.

First, we would like to see how a triangular grid on the triangle faces of the icosahedron is
brought to the circumscribed sphere. The plane containing two neighbouring vertices P,Q on
an icosahedron face and the centre Z of the circumscribed sphere intersects this sphere in a great
circle. It is the shortest connection (orthodrome) between the two points P,Q on the sphere.
The resulting grid contains vertices that are shared by five triangles that are the vertices of the
original icosahedron and vertices shared by six triangles. Consequently, not all triangles are
equal.

This grid on the sphere will be optimized in a next step by so called “spring dynamics”. We
give the idea of the optimization only, this is no accurate description of the algorithm. Imagine
that we have a collection of springs all of them of the same strength and length. We fix a mass
M at each triangle vertex and fix it with glue on the circumscribed sphere. We replace each
edge by one of the springs. Depending on the actual length of the edge, we have to extend some
springs a bit more for the larger triangles, less for smaller ones. We now melt the glue away and
let the vertices move until an equilibrium is reached provided that there is some friction of the
mass points on the sphere. By this procedure, we will obtain a slightly different grid of triangles
which are still slightly distorted and of unequal size, however, the vertices reached positions
that reflect some “energy minimum”. These triangles are the basis of the ICON horizontal grid.
Such a grid has particularly advantageous numeric properties. The North and South Pole of the
earth are chosen to be located at two vertices of the icoshedron that are opposite to each other
and marked as N and S in Fig. 1.1.

The resolution of such a horizontal grid is symbolized by rnbm where n ∈ N and m ∈ N0. The
resolution is defined in such a way that the number of triangles Nrnbm is then given by

Nrnbm = 20n24m (1.1)

6 CHAPTER 1. GETTING STARTED WITH ICON

�
N

S

Figure 1.1: Icosahedron

We describe the triangulation in detail now. We use plane triangles since these are easier to
draw. In fact, the triangulation is performed in two steps.

First step of triangulation. Each of the 20 equilateral triangles is split into n2 equilateral
triangles (see Fig. 1.2). To this end, you first split each edge of a triangle (A,B,C) into n equal
pieces by marking equidistant points (A1, . . . , An−1) on edge a, (B1, . . . , Bn−1) on edge b, and
(C1, . . . , Cn−1) on edge c going counterclockwise around the triangle. Then, you draw straight
lines between corresponding pairs of points (Ai, Bn−i) (being parallel to edge c), (Ai, Cn−i)
(being parallel to edge b), and (Bi, Cn−i) (being parallel to edge a) for i = 1, n − 1. This fills
your equilateral triangle with n2 equilateral triangles. We call this procedure the triangulation
by n− 1 equidistant parallels. It is demonstrated for n = 3 in Fig. 1.2.

We prove that the triangulation by n− 1 equidistant parallels results in n2 triangles in the case
of an equilateral triangle:

1.3. MODEL GRID 7

�
A

B C

c b

a
A1 A2

B1

B2C1

C2

Figure 1.2: Triangulation by 2 equidistant parallels

�
A

B C

C’

c b

a’

b’

a
A1 A2

A′1 A′2

B1

B2

B1’

B2’ C1

C2

Figure 1.3: Parallelogram split into n2 = 9 smaller parallelograms by a pair of 2 equidistant
parallels

Proof: Given an equilateral triangle (A,B,C) with edges (a, b, c), we complete it into a parallel-

8 CHAPTER 1. GETTING STARTED WITH ICON

ogram over edge c with edges (a′, b′) being opposite to (a, b) (see Fig. 1.3. The lines (Ai, Cn−i)
and (Bi, Cn−i) pass through A′i and B′i, i = 1, . . . , n−1, too, since both triangles are equilateral.
In such a way, we get n2 parallelograms which are all similar to the parallelogram (A,C ′, B,C).
Since all parallelograms have edges of the same length and two 60◦ and 120◦ angles, the lines
(Ai, Bn−i) cut them in half forming equilateral triangles. If we also draw the lines (A′i, B

′
n−i),

we get 2n2 equilateral triangles, but only dealing with triangle (A,B,C), we get n2 equilateral
triangles as stated above.

Second step of triangulation. The triangles resulting from step one are further triangulated.
But in contrast to step one, we allow only a triangulation by 2 − 1 = 1 equidistant parallels.
According to the proof in step one, this results in 22 = 4 triangles. This triangulation is then
repeated on the resulting triangles. In total, the triangulation by 1 equidistant parallel is applied
m times to each triangle resulting from the first step such giving in total 4m smaller triangles.
In total, we get 20n2 triangles from step one multiplied by 4m triangles from step two. This
results in Eq. (1.1) for resolution rnbm.

Dual hexagonal grid. The centres of the equilateral triangles contained in each triangle of
the original icosahedron after triangulation are defined by the intersection of the angle bisectors
(which are at the same time also altitudes) of the triangle. The centres of the triangles form a
hexagonal grid that is called to be dual to the grid of triangle vertices. On the ICON grid, the
centres of the slightly distorted triangles form a dual grid of slightly distorted hexagons. Fig. 1.4
shows an example of such a hexagon.

�
Figure 1.4: Dual hexagon to a triangle grid

Resolution of the ICON grid. There are various possibilities to describe the resolution
of a grid. In the case of a grid of equal squares with side length a, the square centres form

1.3. MODEL GRID 9

a grid with a minimum distance of neighbouring points being the length of one side a of the
squares. We tend to say that the resolution ∆square of this grid is ∆square := a. However, there
are neighbouring points connected over the diagonal having a distance

√
2a. In a grid of equal

squares, each square has 8 neighbours 4 of which are connected over sides, 4 over vertices. One

could also define ∆′square = (4a+ 4
√

2a)/8 = 1+
√
2

2 a ≈ 1.21a as resolution of the square grid. In
the case of the ICON grid, there are many possibilities to define a resolution. We will present
four different definitions here.

(i) One of the easiest definitions is to calculate the average triangle area A from the surface of
the earth divided by the number of triangles of the grid. Then, we imagine an associated
grid of squares of this area and adopt ∆square of the associated grid as the resolution of
the triangular grid. This results for grid rnbm in:

∆rnbm :=
√
A =

√
4R2

earthπ/ Nrnbm︸ ︷︷ ︸
=20n24m

= Rearth

√
4π

4× 5n222m
=
Rearth

n2m

√
π

5
, (1.2)

where Rearth ≈ 6371 km is the radius of the earth. For the grid r2b4 with Nr2b4 = 20480,
we get a resolution of ∆r2b4 ≈ 160 km. The advantage of this definition is that the T63
echam grid having 18432 grid points has a similar distance between grid points at the
equator. However, the distance between grid points becomes much smaller in the zonal
direction near the poles.

(ii) The length a of the sides of an average equilateral triangle could also be used. Given the
height h, the area A of an equilateral triangle with side a would be A = ah/2; we also
know that a2/4 + h2 = a2 due to the Pythagorean theoreme. This leads to h =

√
3a/2

and A =
√

3a2/4. From this and with (i), we get:

∆′rnbm := a = 2

√
A/
√

3 = 2/

√√
3∆rnbm =

Rearth

n2m−1

√
π

5
√

3
(1.3)

The vorticity is given at the triangle vertices, thus ∆′rnbm gives the shortest distance
between points where the vorticity is given.

(iii) A third possibility would be the shortest distance between the mid points of two triangle
sides of an average surface equilateral triangle. In the resolution rnbm, this is exactly the
length of a triangle side of a grid rnbm+1, thus we get:

∆′′rnbm := ∆′rnbm+1
=
Rearth

n2m

√
π

5
√

3
=

1

2
∆′rnbm (1.4)

The winds in the dynamics part are given at the midpoints of the triangle sides (perpen-
dicular to the triangle sides).

(iv) As a last possibility for a definition of the resolution of the ICON grid, we would like to
use the length of the side of one hexagon of the dual hexagonal grid assuming that all
triangles have the same size:

∆′′′rnbm :=
Rearth

n2m−1

√
π

15
√

3
(1.5)

Note that ∆′′′rnbm = 2√
3
√
3
∆rnbm ≈ 0.877 × ∆rnbm . All “physics” variables describing

parametrized processes are given on the centres of the triangles.

Proof: See exercise.

10 CHAPTER 1. GETTING STARTED WITH ICON

In general, at each triangle vertex, six triangles meet except at the vertices of the original
icosahedron where only five triangles meet. This means that the angle between the triangle
sides of the spherical triangles at the original icosahedron vertices are larger than there where
6 triangles meet. By the “spring relaxation procedure” this deficiency can be compensated to
some degree. Note further that the sum of the angles in a spherical triangle is generally larger
than 360◦ (this is a general property of spherical triangles).

Most of the variables are stored at the centre of the triangular grid cells, like temperature, specific
humidity, tracer mass mixing ratios, pressure, geopotential, meridional and zonal velocity or the
vertical velocity. We could also say that these variables are stored at the vertices of the dual
hexagonal grid. However, there are variables that have to be stored on other locations according
to the used discretization scheme in the dynamical core. In the dynamic part, we need to store
the horizontal wind normal to the triangle egdes at the midpoints of these edges. The relative
vorticity is stored at the vertices of the triangles, i.e. at the centres of the hexagons of the dual
grid. Sometimes, it is said that we work on a staggered C–grid.

ICON is a model that allows for regional refinements of the grid. If we expect more structure in
a certain region of the globe or we would like to have more detailed information there, we can
use more triangulations in this region. The code structure of ICON is such that it allows for
nested grids. So, each grid is associated with a certain region that can also be the globe and we
speak of a “model domain” for each grid associated with a certain region.

1.3.2 Vertical grid

In a nonhydrostatic model, a vertical coordinate in terms of pressure does not make sense since
it can not be taken for granted that the pressure is strictly decreasing with increasing altitude.
In general, the air mass of an air column above a certain point can not be calculated from the
pressure at that point anymore. Instead, a geometric altitude grid has to be used. In ICON the
choice is an altitude coordinate system that follows the terrain and consequently, the top and
bottom triangle faces are inclined with respect to the tangent plane on a sphere. Still, the top
and bottom triangle faces are held parallel to each other. The exact altitude of each grid box
depends on the geographical position on the globe. The top and bottom faces are called “half
levels” of the vertical grid, the centre of the box is said to be at the “full level” of the vertical
grid. Many variables are given at both, half and full levels. In particular radiation fluxes are
given at half levels only.

With n layers, there are n+ 1 so–called half levels. The half levels l, l+ 1 enclose layers [l, l+ 1[
at the centres of which are the corresponding full levels l, for l = 1, . . . , n. Layer 1 is at the top
of the atmosphere and level n at the bottom of the atmosphere. Half level n + 1 is identical
with the surface of the earth. In contrast to a pressure coordinate system that may start at
pressure p = 0 and thus encompass the whole atmosphere, the z–grid does not contain the whole
atmosphere.

The vertical levels are determined according to an analytical formula already used in the COSMO
model. Let ∆zmin > 0 be the minimum thickness of the layers, zmax > ∆zmin be the altitude
of half level 1, i.e. the model top and σ > 1 be a stretch factor. Then, the altitude of the half

levels z
(h)
l , l = 1, . . . , n+ 1 is defined in the following way:

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 11

α := ln(
∆zmin

zmax
)/ ln(

2

π
arccos((

n− 1

n
)σ))

z
(h)
l := zmax

(
2

π
arccos((

l − 1

n
)s)

)α (1.6)

The layer thickness can be limited with a certain algorithm in the higher troposphere or in
the stratosphere. However, Eq. (1.6) does not yet provide a Smooth LEvel VErtical coordinate

(SLEVE coordinate [2]) since z
(h)
n+1 = 0, i.e. it is placed at 0 m altitude whether there is a

mountain or not. In order to take the topography into account, the topography is first split into
a “large–scale topography” and a “small–scale topography” (λ, φ) 7→ h1,2(λ, φ), respectively,
where (λ, φ) is the position on the globe. Then, decay functions

di(z) :=
sinh[(zmax/si)

β − (z/si)
β]

sinh[(zmax/si)β]
, for i = 1, 2 (1.7)

with decay constants s1,2 > 0 and a decay exponent β > 0 are defined. The smooth terrain
following coordinates z(s) are then:

z
(s)
l (λ, φ) := z

(h)
l +

2∑
i=1

hi(λ, φ)di(z
(h)
l), for l = 1, . . . , n+ 1 (1.8)

In this course, we will work with the climate physics part of ICON that is very similar to the
physics of ECHAM. A hydrostatic pressure is used in many of these equations mainly to calculate
the air mass in a grid box. In order to provide a hydrostatic pressure, the hydtrostatic equation
is solved at each grid point and this pressure is then passed to the ECHAM physics.

1.4 Performing computer experiments with ICON

We will learn how to perform a computer experiment (simulation) with ICON in this section.
Each computer experiment performing a longer simulation demands good planning in terms of
the model settings and input data but also concerning output and postprocessing of output
files. We have three phases: Preparation of input data and namelist files with all the input
parameters of ICON, actually performing the simulation and “baby sitting” the computer runs,
and in a last phase, postprocessing and analysis of the results. These three phases are reflected
in the following sections. All example run scripts store the output files in the experiments

subdirectory of the ICON model. We will not change this here. This means that your model
code has to be installed on a disk with enough disk space to accomodate all output. The work

disk of mistral is large enough, but only temporary storage.

1.4.1 Preparation of a computer experiment with ICON

Each simulation is started by a shell script, mostly called “run script” that has to be prepared
for every computer experiment individually. These run scripts contain the links to all input–data
files, the namelist settings, and the commands to execute the binary model code. The latter are

12 CHAPTER 1. GETTING STARTED WITH ICON

common to all run scripts. In order to avoid the duplication of code, the execution commands
are stored in a “basic run file” ∼icon/run/exec.iconrun where ∼icon means the icon base
directory, e.g. icon-aes. The actual namelists and input–data files are stored in “experiment
files” ∼icon/run/exp.<exp name> according to the various experiments <exp name>. The ex-
periments that are interesting for us are <exp name>=atm amip test, <exp name>=atm amip,
<exp name>=atm rce test, and <exp name>=atm ape test. The basic run file and the experi-
ment file have to be combined in order to get the corresponding run script. This is done by the
following command that has to be executed in the icon base directory ∼icon:

Listing 1.2: Generation of run scripts from basic run file and experiment file

make_runscripts <exp_name >
�� ��←↩

Note that you have to pass the experiment name only. Consequently, the name of each ex-
periment file has to start with exp. since this is put in front of the experiment name by the
make runscripts script automatically. The command in Listing 1.2 creates the run script
∼icon/run/exp.<exp name>.run. Note that this file is stored in the run subdirectory of
∼/icon. This is the script that has to be submitted to the queue of a (super)computer or
can be executed on your workstation. On mistral, the queueing system slurm is installed. The
following commands in Listing 1.3 are the most important ones for this course (<acct> is the
account of which the computer time will be used) :

Listing 1.3: Basic SLURM commands to submit jobs

sbatch -A <acct > <script > # submits script to queue , accounted on

<acct >

squeue -u <user > # shows status of all your jobs and <job_id >

scancel <job_id > # cancels the job with <job_id >

Once you created your run script, you can submit it to the queue by the sbatch command. We
will discuss the namelists and input–data files next.

1.4.2 Namelists for ICON

Since ICON comes in different flavors and consists of a family of models that can all be coupled,
there are a lot of variables determining the exact model configuration. The input of these
variables are organized in various namelists that allow the user to pass a variable to the program
specifying its name and value. The most important namelists are listed in Tab. 1.1.

A computer experiment with any model configuration may be a simulation over a long time
period with a certain start date of the experiment and a certain end date of the experiment.
These start and end dates of the experiment are characteristic of this particular experiment,
e.g. for the AMIP period lasting from January 1979 to December 2008. Such a simulation could
take a lot of computer time, even so much that it is not allowed to run the entire simulation
by the submission of one single job even on a supercomputer. This means that this simulation
has to be split up into several “chunks” consisting of shorter time periods. When the simulation
over one time period is finished, a new job has to be started that continues the simulation
seamlessly. In that case we say that we have to restart the model at a certain date and time.
This simulation of time periods and the restarts making up a whole computer experiment has to
be performed for each model component equally since all components have to be synchronized.
In the file icon master.namelist, there are all relevant namelists for the overall time control
and information which model components are used in the particular computer experiment. All

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 13

information specific to each model component, is organized in namelists contained in separate
files. The names of these files can be defined in namelists of icon master.namelist. However,
there are “conventions” for the naming of these files as given in Tab. 1.1.

Table 1.1: Most important namelists for the atmospheric part of ICON

Namelist name Purpose

Namelists in file icon master.namelist

master nml restart information and path to directory with input and
output files

master model nml model specific information about namelist files, paralleliza-
tion

master time control nml calendar information, start and stop date, restarts
time nml deprecated
jsb control nml mode of JSBACH surface/land model
jsb model nml configuration and namelist file of JSBACH

Further namelists for other models like ocean

Namelists in file NAMELIST <exp name> atm

describing the configuration of the atmosphere

run nml configuration about time integration, model configuration in
terms of presence of processes and tracers.

extpar nml external parameters
initicon nml mode of initialization
grid nml grid information
sleve nml vertical coordinate information
nonhydrostatic nml parameters for the nonhydrostatic dynamic core
parallel nml settings for parallel computing and vectorization
transport nml advective transport of tracers
radiation nml general radiative processes, information about the atmo-

sphere composition included
psrad nml parameters describing the new PSRAD scheme alone
psrad orbit nml orbit of the earth, can be used with PSRAD only
mpi phy nml ECHAM physics parameterizations
echam conv nml ECHAM convection
echam cloud nml ECHAM cloud cover parameters
gw hines nml gravity wave parameterization according to Hines
interpol nml Interpolation for reconstructing variables on the grid. In

particular, radial basis functions (RBF) are used.
output nml namelist specifying output

Namelists in file NAMELIST <exp name> lnd

describing the configuration of the land

jsb model nml overall configuration of land model JSBACH
jsb {srf,soil,veg} nml configuration of surface, soil, and vegetation calculations

Preferably, all the namelist variables should be set in the scripts ∼icon/run/exp.<exp name>

and ∼icon/run/exec.iconrun. However, it may sometimes be hard to find or identify these
variables therein. We go through the namelists one by one and discuss the most important
variables in these respective namelists:

Namelist master nml. There are only two variables in this namelist.

14 CHAPTER 1. GETTING STARTED WITH ICON

lrestart: Logical that is .true. if this job is a restart and continues another simulation,
.false. if it is the initial period of a longer simulation.

model base dir: You can give a path here that may be used in other namelists by the place-
holder <path> when a file name has to be given. E.g., you decide to write output files into
a certain special directory <my output>, set model base dir=’’<my output>’’ here and
set the filename <fname> of the outputfiles to output filename=’’<path>/<fname>’’.
The placeholder <path> has to be used as written here including parenthesis.

Namelist master model nml. This namelist has to be given for each model component like
atmosphere and ocean with the respective entries. The most important variables are:

model type: An integer number describing the model, either 1 for the atmosphere or 2 for the
ocean. Default: -1.

model name: Name of the model component. Can be chosen by the user, but by convention it
is either ‘‘atmo’’ for the atmosphere or ‘‘ocean’’ for the ocean model.

model namelist filename: Name of the namelist file containing the namelists describing
the model model name. These namelist files have to be provided in the directory
∼icon/experiments/<exp name> if you do not use the model base dir variable of
master nml.

model min rank: An integer number that is the index of the first MPI thread simulating this
model component, e.g. 0. Default: 0.

model max rank: An integer number that is the index of the last MPI thread simulating this
model component, e.g. 4. Default: 65535.

model inc rank: An integer number that describes which MPI threads are simulating this
model component by an increment starting at model min rank. E.g. model inc rank=2,
model min rank=0, and model max rank=4 would mean that this model component
is simulated by MPI threads 0, 2, and 4. Setting for another model component
model inc rank=2, model min rank=1, and model max rank=5, would mean that this
other component will be simulated by threads 1,3,5. Default: 1.

Namelist master time control nml. This namelist contains the time information of the en-
tire experiment. If a restart is performed, the restart date is taken from the restart file and is not
inserted in this namelist. There are in principle two different types of time variables: Variables
describing a certain instant and variables describing time intervals for periodic actions like writ-
ing output. The format for an instant is <YYYY>-<MM>-<DD>T<hh>:<mm>:<ss>Z where <YYYY> is
the year in four digits, <MM> the month in two digits, <DD> the day in two digits, <hh> the hour
in two digits, <mm> the minute in two digits, and <ss> the second in two digits. This format will
be called DT–format in the sequel. An interval is described by P<Y>Y<M>M<D>T<h>H<m>M<s>S,
where <Y> are the years followed by the unit Y, <M> are the months followed by the unit M, <D>
are the days followed by the unit D, <h> are the hours followed by the unit H, <m> are the minutes
followed by the unit M, <s> are the seconds followed by the unit S. Note that the letter T makes
the program understand that the following numbers and units refer to hour, minute, and second.
If one of the quantities is zero, it can be omitted including the unit. An eight minute interval
can be writte as PT8M instead of P0Y0M0DT0H8M0S. Furthermore, 60 seconds and minutes, and

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 15

24 hours should not be used but be expressed in the next larger unit. This restriction is lifted
in more recent versions. This interval format will be called TI–format in the sequel. The most
important variables of master time control nml are:

calendar: String that describes the caledar type that is used. Possible strings are ’proleptic

gregorian’ (default) for the proleptic Gregorian calendar, i.e. that the Gregorian calendar
is extended backward to dates before the 15th of October 1582, ’year of 365 days’ for
a calendar without leap years, and ’year of 360 days’ for a year with 12 month of 30
days each.

experimentStartDate: Variable of DT–format meaning the start date of the experiment (not
the start date of the actual chunk of an experiment). Default: empty string.

experimentStopDate: Variable of DT–format meaning the end date of the experiment (not the
end date of the actual chunk of an experiment). Default: empty string.

checkpointTimeIntval: Variable of TI–format meaning the interval at which restart files are
written. The simulation is not interrupted there. Default: empty string.

restartTimeIntval: Variable of TI–format meaning that a restart file is written and the sim-
ulation interrupted. Default: empty string.

Namelist jsb control nml. The land model JSBACH plays a special role in ICON since it
is not a separate model like the ocean model but an integral part of the atmosphere model. On
the other hand, simulations with JSBACH alone can be performed.

is standalone: Logical that is .true. if JSBACH is used without an explicit simulation of
the atmosphere. Default: .true.

restart jsbach: Indicates restart of JSBACH. Important for stand alone version. Default:
.false..

Namelist jsb model nml. The JSBACH land model comes in different degrees of complexity
of the underlying processes. These can be described here, but the corresponding parameters have
to be defined in the specific JSBACH namelists.

model name, model shortname, model description: strings of 30, 10, and 132 characters de-
scribing the actual JSBACH configuration. Default: empty string.

model namelist filename: filename of the file containing all JSBACH specific namelists. De-
fault: empty string.

Namelist run nml.

modelTimeStep: Variable of TI–format giving the model time step. Default: Emtpy string.

num lev: Array of integers giving the number of model layers (full levels) for each “model
domain”, i.e. for the global grid and possible local refinements. Default: 31 for each
domain with a maximum of 10 domains.

16 CHAPTER 1. GETTING STARTED WITH ICON

ltestcase: Logical that is .true. if a special test case like the aqua planet or the radiative
convective equilibrium has to be simulated. Default: .true.

ldynamics: Logical switching on (.true.) or off (.false.) the dynamical core (tendencies by
adiabiatic processes). Default: .true.

ltransport: Logical that switches on (.true.) or off (.false.) the large scale transport of
tracers (if there are any) by the dynamical core. Default: .false.

iforcing: Integer that describes the package according to which the dynamics and transport
by parameterized processes is calculated (“physics” of the model).

iforcing meaning

0 no forcing
1 Held–Suarez forcing
2 ECHAM forcing/physics
3 NWP forcing
4 local diabatic forcing without physics
5 local diabatic forcing with physics

Default: 0

ntracer: Integer, number of tracers, default: 0.

restart filename: String that specifies restart filename. You can inte-
grate the restart date and time into the name by using the place-
holder <rsttime>, e.g. ’restart run1 <rsttime>.nc’. Default:
’<gridfile> restart <mtype> <rsttime>.nc’.

output: Array of strings describing output mode for each model domain (refinement of the
grid). Use ’none’ for no output at all, ’nml’ for output specified by output namelists,
and ’totint’ for the output of total integrals only. Default: ’default’ for the global
domain, empty strings for all other domains.

Namelist extpar nml. This namelist is a bit an oddment since there are a lot of external
parameters like aerosol data or ozone concentrations or boundary condition files like sea surface
temperatures that have to be read by the model. But these are not handled here. Only two
namelist variables are interesting for us:

itopo: Integer that defines whether the topography is specified by analytical functions
(itopo=1) or read from a netcdf file itopo=2). Default: 0.

extpar filename: String that gives the filename of the topography. Default:
’<path>extpar <gridfile>.

Namelist initicon nml. Here, only one variable describing the initialization of ICON is im-
portant for us:

init mode: Integer number between 1 and 7 describing the initialization mode. Default: 2 (IFS
analysis data).

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 17

Namelist grid nml. This namelist contains variables describing the triangular grid. In par-
ticular, the rotation of the grid can be defined and whether or not there are nested domains.
The following variables are the most important ones:

grid angular velocity: Real variable describing the angular velocity of the grid, i.e. the ro-
tation of the earth. Given in radiant per second. Default: 7.29212e-5.

dynamics grid filename: (Array of) strings giving the filenames for the grids of each (nested)
domain in arbitrary order. Default: empty string.

dynamics parent grid id: Array of integers giving the position of the parent grid in the array
dynamics grid filename by position. If the nth entry in this vector is m, this means
that the mth grid listed in dynamics grid filename is the parent of the nth grid listed
in dynamics grid filename. A value of “0” at the nth position means that the nth grid
listed in dynamics grid filename is the global domain. Default: 0,1,2,....

create vgrid: Logical that is .true. for writing the vertical grid into a file, .false. otherwise.
Default: .false.

Namelist sleve nml. This namelist defines the vertical grid as it is used in the dynamical
core. The echam physics does not use this vertical grid information directly, but relies on the
corresponding pressures.

top height: Real variable giving the “model top” in metres above sea level, i.e. the height of
half level 1 that is the upper limit of the highest model layer. Default: 23500.0.

min lay thckn: Real variable giving the geometric height of the lowest layer in the atmosphere
in metres. If a value equal or smaller 0.01 is given, all layers will be chosen to be of the
same thickness. This variable corresponds to ∆zmin of Eq. (1.6). Default: 50.

stretch fac: Real variable giving s of Eq. (1.6). Default: 1.

decay scale {1,2}: Real numbers giving the decay constants s1,2 of Eq. (1.7). Default: 4000.;
2500.

dcay exp: Real number giving the decay exponent β of Eq. (1.7). Default: 1.2.

flat height: Above this altitude in metres, the layers do not depend on the underlying topog-
raphy anymore; real number, default: 16000.

Namelist nonhydrostatic nml.

ndyn substeps: The dynamic core uses time steps that may be smaller than the physics part
of the model. Divides the time step into ndyn substeps integer parts. Default: 5.

damp height: Above this height in metres, w–damping and the “sponge layer” is applied.
It is a vector that may contain different heights for each model domain. Default:
(45000.,−1.,−1., . . .).

rayleigh coeff: Rayleigh coefficient for damping in “sponge layer”. Default:
(0.05,−1.,−1., . . .).

18 CHAPTER 1. GETTING STARTED WITH ICON

vwind offctr: The vertical wind is not calculated at the cell centre, but “off–centred” in order
to stabilize the numeric procedure. Real number, default: 0.15.

divdamp fac: The divergence of the wind field can be damped by this factor (applied in every
dynamics substep). Default 0.0025.

Namelist parallel nml. In terms of model parallelization, the model domain, e.g. the whole
globe, is first split into various regions. To each region a processor (or thread) is assigned to
perform the respective computations. On each processor, we imagine the grid–cell centres of
this respective region to be stored in one long vector. The order of the grid–cell centres does not
play any role for us. In fact, this vector may be too long to be effectively treated by a certain
machine architecture and considerably slow down the ICON program if treated as such. In order
to obtain shorter vectors, we split this long vector into several chunks of moderate length nproma

of our choice. We can choose nproma freely, it is not required that it is a divisor of the number
of grid cells on the processor. However, filling chunks with nproma grid cells successively may
result in one shorter chunk at the end. These chunks are called blocks and arranged into a two–
dimensional array a(1:nbdim,nblks c), where nblks c is the number of the blocks and nbdim

the maximum length of the blocks given by nproma. The first nblks c-1 blocks have values set
for the full length nproma whereas the last one may be shorter. As we learned in Sec. 1.3.1,
some of the variables are not stored at the cell centres but at the centers of the triangle edges or
the vertices. In these latter two cases, the corresponding arrays are any b(1:nbdim,nblks e)

and c(1:nbdim,nblks v), respectively. The length of the last block is npromz c for the centres,
npromz e for the edge centres, and npromz v for the vertices, respectively.

nproma: Integer describing the maximum length of a block. Default: 1.

Namelist transport nml. It is possible to define the exact numeric procedure for the tracer
transport for each tracer individually. Theoretically, 44 different settings for the numeric proce-
dure are possible. In addition, several flux limiters can be chosen. A flux limiter is set to limit
the total variation of the solution in order to reduce artificial “wiggles”. To this end, the flux
limiter limits the fluxes to “reasonable values”. We cannot explain all possibilities here, so we
restrict ourselves to the most relevant settings. In general, the mass mixing ratio is transported.
If transport is switched off, the mass mixing ratio is kept constant (not the local tracer mass).
For a more detailed description of the tracer transport properties, see [3].

ihadv tracer: Integer vector of ntracer elements for each tracer describing the horizontal
advection.
ihadv tracer meaning

0 no horizontal advection.
2 “Miura” scheme meaning second order with lin-

ear reconstruction.
52 mixture of “Miura” method and flux form semi–

Lagrangian transport (FFSL transport).
Default: 2.

itype hlimit: Integer vector of ntracer elements defining a flux limiter for the horizontal
advection of each tracer.

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 19

itype hlimit meaning

0 no flux limiter
3 monotonous flux limiter
4 positive definite flux limiter

Default: 4.

ivadv tracer: Integer vector of ntracer elements for each tracer describing the vertical advec-
tion.
ivadv tracer meaning

0 no vertical advection. Note that
tracer mass is conserved in each
grid box, not the mass mixing ra-
tio. This is different to the horizon-
tal advection.

3 piecewise parabolic method (ppm),
works for Courant–Friedrichs–
Lewy–numbers CFL > 1.

Default: 3.

itype vlimit: Integer vector of ntracer elements defining a flux limiter for the vertical advec-
tion of each tracer.
itype hlimit meaning

0 no flux limiter
1 semi–monotone slope limiter

Default: 1.

lvadv tracer: Logical that switches on (.true.) or off (.false.) the vertical tracer advection
in general.

Namelist radiation nml. There are two radiation schemes in ICON: The older RRTM
scheme and the newer PSRAD scheme. The RRTM scheme does not work together with the
ECHAM physics. Since the radiation nml namelist already contained a lot of variables which
are relevant for the PSRAD scheme also, it was intended to avoid duplication of these variables
in a psrad nml namelist. On the other hand, there are variables for the PSRAD scheme alone
which are in the psrad nml namelist. Furthermore, the radiation nml namelist contains a lot
of variables that do not really describe the radiation itself but the composition of the atmo-
sphere for example. In order to start a separation of these groups of variables, a new namelist
psrad orbit nml was introduced that describes the orbit of the earth.

irad <spec>: Integer variables that describe how the respective gas concentrations are set for
the radiative transfer calculation. <spec> is one of h2o, co2, ch4, n2o, o3, o2, cfc11,
cfc12.

20 CHAPTER 1. GETTING STARTED WITH ICON

irad <spec> meaning

0 the volume mixing ratio of <spec> is assumed
to be 0

1 the volume mixing ratio of <spec> is taken from
an interactive tracer

> 1 various profiles eventually transient in time can
be chosen, see [3]

2 vertically and horizontally constant greenhouse
gas concentration

4 greenhouse gas scenario
8 greenhouse gas is read from a file as 3d–field

Default: H2O: 1, CO2, O2, CFC11, CFC12: 2, CH4, N2O: 3, O3: 0.

vmr <spec>: Real variable giving the volume mixing ratios x<spec> of respective species <spec>
if irad < spec > = 2. Default: xCO2 = 348 × 10−6, xCH4 = 1650 × 10−9, xN2O =
306 × 10−9, xO2 = 0.20946, xCFC11 = 214.5 × 10−12, xCFC12 = 371 × 10−12, no default
value for O3.

irad aero: integer number describing the aerosol mode. Many settings are possible, only “0”
(meaning no aerosols) and the modes irad aero > 10 work with the PSRAD radiation.
irad aero = 18: optical properties of anthropogenic aerosols are given as “simple plumes”,
i.e. as parametrized functions of location in the atmosphere, wave length and time. The
natural background is read from files as also the optical properties of stratospheric aerosols.
Default: 2.

ighg: integer number choosig a certain greenhouse gase scenario. Default: 0 (no greenhouse gas
scenario).

ldiur : logical that switches on (.true.) or off (.false.) the diurnal cycle. Default: .true.

lyr perp: Logical to switch on (.true.) or off (.false.) the perpetual repetition of the orbit
of one single year. Default: .false.

yr perp: If the orbit of a specific year has to be used in perpetual repetition, this integer gives
the specific year. Default: -99999.

isolrad: This integer gives the mode of the solar irradiation, in particular the choice of the
“solar constant”.
isolrad meaning

0 the standard RRTM scheme solar irradiation is
used.

1 transient solar irradiation “as measured” e.g. by
satellites

2 pre–industrial solar irradiation
5 globally symmetric solar irradiation constant in

time corresponding to an energy flux into the
atmosphere like for pre–industrial solar irradia-
tion

Default: 0.

Namelist psrad nml. This namelist describes settings that concern the PSRAD radiation
alone. They do not have any effect on the RRTM radiation.

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 21

lradforcing: 2d–logical that switches on (.true.) or off (.false.) the computation of in-
stantaneous aerosol forcing versus reference aerosols for short and longwave radiation,
respectively. Default: (/.false.,.false./). Disabled for the moment.

irad aero forcing: Integer that describes the mode of reference aerosols. The same numbers
as for irad aero can be chosen. Default: 0. Disabled for the moment.

fco2: real factor by which the CO2 volume mixing ratio is multiplied in the PSRAD radiation
calculation for easy definition of scenarios. Default: 1.0

Namelist psrad orbit nml. This namelist contains parameters that influence the orbit if
PSRAD radiation is used.

cecc: Real number describing the eccentricity of the orbit if a Kepler orbit is used. Default:
0.016715

cobld: Real number describing the obliquity of the earth axis versus the plane of the orbit.
Default: 23.44100

l orbvsop87: Logical that switches on (.true.) or off (.false.) the use of the real (observed)
orbit that is slightly different from the Kepler orbit. Default: .true.

l sph symm irr: Logical that switches on (.true.) or off (.false.) the usage of spherically
symmetric irradiation of the earth, e.g. for radiative–convective equilibrium experiments.
Note that spherically symmetric irradiation needs (i) a scaled irradiation (e.g. isolrad =
5) and (ii) the usage of a Kepler orbit with no eccentricity since otherwise, the irradiation
is scaled by a hypothetical distance sun–earth. Default: .false.

Namelist mpi phy nml. Within this namelist, the various parameterized physics processes
can be timed to start and end at a certain date and time and their calling frequency can be
determined. There is even the option to switch them off completely. The idea behind this
individual time control is to optimize efficiency since the various processes may have different
individual characteristic time scales. This means that it may be sufficient to calculate some
processes only every several time steps and keep their tendencies constant over these time steps
adding them to the respective variables. Take the radiative transfer calculation for example. It
may be scaled by the changing incoming solar radiation but the composition and temperature in
a column is not changing so much that it would justify to calculate the radiative transfer in very
time step when performing climate simulations. So, the fluxes are used for e.g. 12 integration
time steps in a row.

For each physics process, there is a component of mpi phy config(jg), jg being the domain
index, that is a TI–variable describing the frequency at which this particular process is called.
If the string is empty, the corresponding physics process is never called. In order to call the
radiation in domain 1 every two hours, set

Listing 1.4: Example for giving an individual frequency to the radiation call

mpi_phy_config (1)%dt_rad=’’PT2H’’

for example. The time intervals have to be integer multiples of modelTimeStep. The following
processes can be triggered by this method:

22 CHAPTER 1. GETTING STARTED WITH ICON

dt rad: TI–variable that gives the radiation time step.

dt vdf: TI–variable that gives the time step for vertical diffusion.

dt cnv: TI–variable that gives the time step for convection.

dt cld: TI–variable that gives the time step for large scale cloud processes.

dt gwd: TI–variable that gives the time step for the gravity wave drag calculation.

dt sso: TI–variable that gives the time step for subgrid scale orographic effects.

dt mox: TI–variable that gives the time step for methane oxidation and water vapour photolysis
in the upper atmosphere (stratosphere and higher).

dt car: TI–variable that gives the time step for the linearized interactive ozone model according
to Cariolle and Teyssèdre.

dt art: TI–variable that gives the time step for the ART aerosol and chemistry submodel
(future).

By default, all TI–variables are empty stings meaning that the corresponding processes are all
switched off.

The start and end dates are DT–variables that can be given in the same way as the frequencies
above. Instead of dt these variables start with sd for the start date and ed for the end date.

Calculating radiation for only one day on the 1st of January 1979, at a frequency of two hours,
you would have to give the following variables in the namelist:

Listing 1.5: Example for giving start and end date and an individual frequency to the radiation
call

mpi_phy_config (1)%dt_rad=’’PT2H’’

mpi_phy_config (1)%sd_rad=’’19790101 T00 :00:00Z’’

mpi_phy_config (2)%ed_rad=’’19790102 T00 :00:00Z’’

Furthermore, surface processes can be switched on or off in a similar way. There are logicals as
components of mpi phy config(jg) switching on (.TRUE.) and off (.FALSE.) the corresponding
process.

ljsb: Switch on (.TRUE.) or off (.FALSE.) the land surface model JSBACH.

lamip: Switch on (.TRUE.) or off (.FALSE.) the use of the AMIP sea surface temperatures.

lice: Switch on (.TRUE.) or off (.FALSE.) the sea ice temperature calculation.

llake: Switch on (.TRUE.) or off (.FALSE.) the usage of lakes in JSBACH.

lmlo: Switch on (.TRUE.) or off (.FALSE.) the usage of a mixed layer ocean.

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 23

Namelist output nml. This namelist can be repeated for an arbitrary number of output
files. If there are several model domains, one output file for each model domain specified in this
namelist will be created under the same base name of the output files.

output filename: string describing the base name of the output file. Placeholders for the path
can be used, see model base dir of the master nml namelist. Information about the
model domain and leveltype and an extension will be included automatically. Default:
empty string.

filename format: string that describes the exact composition of the filename.
Default: <output filename> DOM<physdom> <levtype> <jfile>. In this string,
<output filename> is a placeholder for the string as defined in output filename,
<physdom> is a placeholder for the index of the model domain, <levtype> is a place-
holder for the level type, e.g. model levels or pressure levels, <jfile> is a placeholder for
the index of the file in the experiment resulting from file interval counted over the
whole simulation period. There are other placeholders like <levtype l> also for the level
type, and <datetime>, <datetime2>, <datetime3> for the date and time at which this
output file starts.

filetype: Integer encoding the filetype. 2: GRIB2, 4: netcdf2, 5: netcdf4. Default: 2

file interval: Variable of TI–format describing the time interval at which new output files
will be opened. Default: empty string.

dom: Vector of integers describing the model domains for which output is desired (index of model
domain). Default: -1.

output interval: This string is a TI–variable describing the output interval. Default: empty
string.

output {start,end}: These strings are DT–variables describing the start and end date and
time of the output. Default: empty strings.

{ml,pl,hl} varlist: Array of variable names that will be written to the output files on model,
pressure, or height levels. There is a maximum of 999 model–level variables, but only 150
pressure– or height–level variables allowed. Which variables are selectable is not easy to
know, we will discuss this later. Default: empty strings.

include last: Logical that indicates whether (.true.) or not (.false.) to include the last
time step that has to be written into the output file.

output grid: Logical that indicates whether (.true.) or not (.false.) the grid information
is added to the output file. Default: .false.

remap: Integer indicating whether an interpolation to a different horizontal grid is desired.
remap meaning

0 no interpolation (output on icosahedral grid)
1 output on a regular longitude–latitude grid

Default: 0

reg lon def: Array of three real numbers describing the longitudes of a regular longitude–
latitude output grid. You have to give the first longitude, an increment, and the last
longitude. Instead of an increment, you may give the total number of grid points in
longitude direction. See the reg def mode variable for the distinction between increments
and numbers of grid points. Default: none

24 CHAPTER 1. GETTING STARTED WITH ICON

reg lat def: Array of three real numbers describing the latitudes of a regular longitude–latitude
output grid. You have to give the first latitude, an increment and the last latitude. Instead
of an increment, you may give the total number of grid points in latitude direction. See the
reg def mode variable for the distinction between increments and numbers of grid points.
Default: none

reg def mode: This integer tells ICON whether you defined your regular grid giving increments
(reg def mode = 1) or total numbers of grid points (reg def model = 2) for both longi-
tudes and latitudes. Default: 0

operation: string that indicates special operations that have to be done on output, e.g. ’mean’
denotes time average over the output interval. This does not work together with remap-
ping! Default: empty string.

1.4.3 Input data for ICON

There are three different types of input data needed to perform a simulation with ICON: (i)
Initial conditions or restart data, (ii) boundary conditions, and (iii) parameters describing
e.g. the composition of the atmosphere.

Most of the external data are stored either in /pool/data/ICON/ or in ∼icon/data.

Initial conditions

The dynamics of the atmosphere is determined by functions

f
(i)
t :

{
S2 × R+ → R
(λ, φ, z) 7→ f

(i)
t (λ, φ, z)

, for t ∈ R+ (1.9)

which are the solutions of corresponding Navier–Stokes equations on a spherical shell S2 × R+,

i indicating the various dynamic quantities. These functions f
(i)
t , t ∈ R+ are called “prognostic

variables”. The initial state of the atmosphere must specify these prognostic variables in the
atmosphere at the beginning of the simulation which we say to be at t = 0 without any restriction
since we can shift the time in a way so that this is true. The prognostic variables are vertical and
horizontal winds, the air density, the Exner pressure Π = (p/p0)

Rd/cp , po: reference pressure,
Rd: specific gas constant of dry air, cp: isobaric heat capacity of dry air, the virtual potential
temperature θ = T (p0/p)

Rd/cp , the specific humidity q, cloud water xl, cloud ice xi, possibly
other tracers, and the turbulent kinetic energy k. We may imagine the set of these functions
at time t = 0 as a point in an abstract phase space. This point will move in the phase space
with time providing a trajectory that depends on the initial conditions. Weather is a chaotic
system: If we start only at a slightly different point we will see us arbitrarily far from the first
trajectory if we only wait long enough. In practice, we can never know the initial conditions very
accurately, since there are far too few measurement stations in the atmosphere and the data
handling is a nightmare already now. It is a very difficult question how accurate the knowledge
of this initial condition must be to achieve a certain prediction skill.

In ICON, there are various initialization procedures. For some test cases, the initial conditions
are set in certain subprograms, all collected in ∼icon/src/testcases. For the aqua–planet, ini-
tialization is performed by the subroutine init nh state prog APE in file mo nh ape exp.f90,

1.4. PERFORMING COMPUTER EXPERIMENTS WITH ICON 25

for the radiative convective equilibrium experiment (RCE), it is done by init nh state rce glb

in file mo nh rce exp.f90. For the AMIP experiments, initial files are used instead. The initial
files have a naming convention <descriptor> R<r>B<bb> DOM<dd>.nc where <descriptor> is
either ifs2icon or dwdFG, or dwdana for the various data sources, the resolution rnbm is en-
coded by one digit < r > = n and two digits < bb > = m, the domain index is encoded
by two digits < dd >. For the “standard” AMIP–experiment, the initial file for IFS analysis
data is therefore ifs2icon R2B04 DOM01.nc. The initial data for JSBACH are stored in a file
ic land soil.nc. In principle, an arbitrary name of the initial file can be given by the vari-
ables <descriptor> filename of the namelist initicon nml. You can find various examples
for initial files in /pool/data/ICON/setup/ifs iconremap amip. These have to be linked to
the corresponding standard names as described above. The land data are in a complicated path
you can find in the run script examples.

Boundary conditions

Boundary conditions give the values of the prognostic variables at the boundaries of the at-
mosphere. Apart from the prognostic variables in the dynamics part, there is the radiation
transfer that also needs boundary conditions: The solar irradiation at the top of the atmosphere
and the reflectivity at the surface of the earth (bottom of the atmosphere). The boundary
conditions can be either constant in time or periodic with a daily or yearly cycle that is re-
peated each day or year, or “transient” meaning that they are time dependent but without
periodicity. The sea surface temperature and sea ice data have to be in one file, bc sst.nc and
bc sic.nc for all simulated years, respectively. The solar irradiance has to be stored in a file
bc solar irradiance sw b14.nc for all simulated years, if not one of the standard irradiances
is used which are constant in time. The orbit influences the solar irradiance since the irradiance
will be scaled by the sun–earth distance.

Parameter data sets

As for boundary conditions, these data sets can be constant, periodic or transient in time. There
are many parameter sets, depending on the exact configuration of the models. We give a list of
parameter files here without being exhaustive.

26 CHAPTER 1. GETTING STARTED WITH ICON

Table 1.2: Parameter data for ICON

standard filename description

Data related to the composition of the atmosphere

bc ozone <yyyy>.nc 3d–ozone volume mixing ratio for
year <yyyy> (four digits).

bc aeropt kinne sw b14 fin <yyyy>.nc fine mode aerosol optical properties
after S. Kinne, solar radiation for
year <yyyy> (four digits)

bc aeropt kinne sw b14 coa <yyyy>.nc coarse mode aerosol optical proper-
ties after S. Kinne, solar radiation
for year <yyyy> (four digits)

bc aeropt kinne lw b16 coa <yyyy>.nc coarse mode aerosol optical proper-
ties after S. Kinne, thermal radia-
tion for year <yyyy> (four digits)

bc aeropt stenchikov lw b16 sw b14 <yyyy>.nc stratospheric aerosol optical proper-
ties for solar and thermal radiation
for year <yyyy> (four digits)

MACv2.0-SPv1.nc optical properties of anthropogenic
aerosols in parametrized functions

bc greenhouse gases.nc transient greenhouse gas concentra-
tions of greenhouse gases with uni-
form global distribution

ECHAM6 CldOptProps.nc cloud optical properties

Parameter files for radiation

rrtmg sw.nc parameters for radiative transfer
calculation used in PSRAD for the
underlying RRTMG algorithm, so-
lar radiation

rrtmg lw.nc parameters for radiative transfer
calculation used in PSRAD for
the underlying RRTMG algorithm,
thermal radiation

Land parameter files

bc land frac.nc land fraction at each grid cell
bc land hd.nc land hydrological discharge model
bc land phys.nc physical properties of land
bc land soil.nc soil properties
bc land sso.nc subgrid scale orography (statistical

parameters for the description of un-
resolved orography in a grid cell).

Chapter 2

The code of ICON

2.1 Flowchart of ICON

We present a very much simplified flowchart of the atmosphere version of ICON in Fig. 2.1.

We give a short description of the location and the purpose of the various subprograms. We
list them in the order as they appear in the flowchart Fig. 2.1. Since all code files are collected
in subdirectories of the ∼icon/src directory with only very few exceptions, we will abbreviate
this by the symbol SRC.

program icon: (SRC/drivers/icon.f90) main program of ICON sets global attributes includ-
ing a version number, initializes MPI.

init master control: (SRC/drivers/mo master control.f90) assigns MPI ranks (processor)
to each model part, e.g. atmosphere, ocean.

read master namelist: (SRC/namelists/mo master namelist.f90) reads
icon master.namelist.

atmo model: (SRC/drivers/mo atmo model.f90) calls all relevant subprograms for the atmo-
sphere. At this point, the ocean model or some special test modes call ocean model and
icon testbed instead of atmo model, respectively. In that way, the ocean is well separated
from the atmospheric part and the calling sequences in ocean model are rather distinct
from the atmo model, although the organization of the code in parts of an initialization
phase, time integration loop, cleanup phase is similar.

construct atmo model: (SRC/drivers/mo atmo model.f90) calls the reading of namelists and
all important initializations outside time integration loop.

read atmo namelist: (SRC/namelists/mo read namelists.f90) reads namelists concerning
the atmospheric model.

atmo nonhydrostatic: (SRC/drivers/mo atmo nonhydrostatic.f90) calls all relevant sub-
programs to initialize (also memory allocation) and simulate a nonhydrostatic atmosphere,
and to free memory at the end.

construct atmo nonhydrostatic: (SRC/drivers/mo atmo nonhydrostatic.f90) call all sub-
programs establishing the derived types needed for the nonhydrostatic model and assigning
all relevant variables concerning the choice of dynamics equations.

27

28 CHAPTER 2. THE CODE OF ICON

Figure 2.1: Flowchart of ICON

program icon

init master control

read master namelist

atmo model

construct atmo model

read atmo namelist

atmo nonhydrostatic

construct atmo nonhydrostatic

construct nh state

new nh state {prog,tracer} list

configure advection

init echam phy

radiation and convection setup

construct echam phy state

initcond echam phy

perform nh stepping

initializations

perform nh time loop

integrate nh

interface iconam echam

echam phy bcs global

jsbach start timestep

echam phy main

jsbach finish timestep

interface echam ocean

destruct atmo nonhydrostatic

destruct nh state

cleanup echam phy

destruct atmo model

end

alternative: ocean model, icon testbed

2.1. FLOWCHART OF ICON 29

construct nh state: (SRC/atm dyn iconam/mo nonhydro state.f90) calls subprograms to
establish a derived type describing the state of the non–hydrostatic model.

new nh state {prog,tracer} list: (SRC/atm dyn iconam/mo nonhydro state.f90) allocat-
ing the derived types containing all prognostic variables and the tracer variables (trans-
ported quantities).

configure advection: (configure model/mo advection config.f90) set all variables rele-
vant for the choice of the numerical method to calculate advection.

init echam phy: (SRC/atm phy echam/mo echam phy init.f90) initializations of echam
physics that have to be done outside the time loop, e.g. radiation and convection setup.
The data structures are provided by construct echam phy state.

construct echam phy state: (SRC/atm phy echam/mo echam phy memory.f90) allocates
memory and the derived types for all quantities that are needed in the parameterized
physics calculation (equations of echam physcics).

initcond echam phy: (SRC/atm phy echam/mo echam phy init.f90) Set initial conditions for
echam physics.

perform nh stepping: (SRC/atm dyn iconam/mo nh stepping.f90) initialization of time inte-
gration loop and call of subroutines performing the time integration.

perform nh time loop: (SRC/atm dyn iconam/mo nh stepping.f90) compute some diagnos-
tics and initializations.

integrate nh: (SRC/atm dyn iconam/mo nh stepping.f90) time integration loop with calls of
time dependent boundary conditions or parameter sets and the dynamics and physics
(parameterized equations) inside.

interface iconam echam: (SRC/atm phy echam/mo interface iconam echam.f90) Interface
routine to the ECHAM physics parameterization and the dynamical core. This subroutine
has to call the land surface model and the interaction between ocean and atmosphere.

echam phy bcs global: (SRC/atm phy echam/mo echam phy bcs.f90) sets the boundary con-
ditions and parameters (composition of the atmosphere) depending on time for the
ECHAM physics.

jsbach start timestep: (SRC/lnd phy jsbach/interfaces/mo jsb interface.f90) inter-
face to the land surface model JSBACH.

echam phy main: (SRC/atm phy echam/mo echam phy main.f90) this subroutine corresponds to
physc.f90 in ECHAM and calls radiation, vertical diffusion, large scale cloud processes,
and convection.

jsbach finish timestep: (SRC/lnd phy jsbach/interfaces/mo jsb interface.f90) inter-
face to the land surface model JSBACH.

interface echam ocean: (SRC/atm phy echam/mo interface echam ocean.f90) interface to
the ocean model for atmosphere–ocean interactions.

destruct atmo nonhydrostatic: (SRC/drivers/mo atmo nonhydrostatic.f90) subroutine
for cleanup of memory.

30 CHAPTER 2. THE CODE OF ICON

destruct nh state: (SRC/atm dyn iconam/mo nonhydro state.f90) deallocates memory of
derived types for the dynamics of the non–hydrostatic model.

cleanup echam phy: (SRC/atm phy echam/mo echam phy cleanup.f90) deallocates memory of
derived types used in the ECHAM physics part.

destruct atmo model: (SRC/drivers/mo atmo model.f90) deallocation of general memory for
the atmospheric model.

2.2 Survey of FORTRAN techniques used in ICON

The code of ICON uses user–defined derived types and modules extensively. It may be good
to recapitulate these FORTRAN features in order to better understand the code. In addi-
tion, this section offers the opportunity to discuss some of the FORTRAN conventions used in
ICON, although we will not be exhaustive in that respect. There is a detailed “style guide”
∼icon/doc/style/icon standard.pdf [1].

General remark on real variables: They are all typed according to

Listing 2.1: Declaration of real variables

USE mo_kind , ONLY: wp

REAL(wp) :: <varlist >

The module SRC/shared/mo kind.f90 contains all available kinds of variables.

2.2.1 Modules

The ICON code has a main program and many subprograms which are all organized in modules.
However, the modules contain much more than only subprograms: All important data types,
mostly of derived type, and many constants are also defined in modules and can be used in other
modules. A module in ICON has the following syntax:

Listing 2.2: Modules in ICON

MODULE <module_name >

USE <any_module_1>, ONLY: <ent11>, <ent12>, ...,<ent1m1>

...

USE <any_module_n>, ONLY: <entn1>, <entn2>, ...,<entnmn>

IMPLICIT NONE

PRIVATE

PUBLIC :: <names of public entities >

<declaration of entities used in the whole module >

CONTAINS

<subprograms >

END MODULE <module_name >

2.2. SURVEY OF FORTRAN TECHNIQUES 31

Note that the module name is used in the MODULE and END MODULE statement.

In the USE statements, we let the module know that it has to use entities of other modules. It
is the convention that all USE statements are collected at the beginning of a module and no USE

statements are given in any of the subprograms of ICON. The advantage is to see immediately
all entities that are used from other modules in a particular module. It is easy to know where a
certain entity comes from since all “USE”s are collected at the beginning. Consequently, it is not
possible to use the same entity a in one subprogram from module A and in another subprogram
of the same module from another module B. The USE statements are always applied together
with the ONLY statement. This means that only the explicitly stated entities ent11, . . . of a
module can be used. This makes your module much more readable because you immediately
know from which module a certain quantity in any of your subprograms comes from without
that you have to search in all the modules appearing in a USE statement. Possible conflicts are
also immediately visible.

The IMPLICIT NONE statement has the effect that all entities of the module have to be declared
explicitly. This prevents you from being a victim of your own typo errors since such variables
are then of no known type and the compilation will fail with a respective error message.

The general PRIVATE statement has the effect that other modules cannot use any entity that is
not explicitly stated PUBLIC. This is useful in particular if somebody does not state the ONLY in
his USE statements for protecting your entities.

Do not forget the CONTAINS statement before you define any subprogram.

2.2.2 Derived types

In Fortran 90, it is possible to combine variables of different types under one name. So, you can
access a collection of integer, character and real variables with one single name and pass them
under this name into subprograms like an array. Such a complex data structure has first to be
declared in a type statement. Then, you can declare variables of this new data type.

The syntax of the declaration of a new data type by a type statement is as follows:

Listing 2.3: type statement

type <typename >

declaration of var1 (e.g. integer :: iv1)

! ...

declaration of varn

end type [<typename >]

Then, you can declare variables of type <typename> by

Listing 2.4: type

type (<typename >) [,attributes] :: <varlist >

A variable var of < varlist > has then n “components”

Listing 2.5: components

var%var1

var%var2

! ...

var%varn

32 CHAPTER 2. THE CODE OF ICON

Each component can be handled separately or var can be treated as an integral entity by using
its name (e.g. for passing it into subprograms, in write–statements if there are no pointers in
the data type involved).

A good example are vectorfields which represent functions f : Rm → Rn, meaning that we will
represent each component fi : Rm → R, i = 1, . . . , n by anm–dimensional field in FORTRAN 90.
For the full description of f , we need a set of n such m–dimensional vectors which we can store
in a data structure containing each component fi, i = 1, . . . , n as the components of the data
structure. The horizontal wind field is an example with m = 3 and n = 2 (the u and v
components depend both on the longitudes, latitudes, and levels).

Listing 2.6: Derived type of a vectorfield

TYPE t_windfield

! nlon: number of longitudes

! nlev: levels

! nlat: latitudes

real , dimension (nlon , nlev , nlat) :: u, v

END TYPE t_windfield

TYPE (t_windfield) :: hwind

In this example, hwind%u, hwind%v contain the u and v components of the horizontal windfields.
The components hwind%u, hwind%v are themselves three–dimensional arrays (vectors). The
zonal wind u at a certain longitude index ilon, latitude index ilat and a level index ilev is
then given by hwind%u(ilon,ilev,ilat).

Derived types can be “nested”. If we use a regional refinement, we need the horizontal wind for
each “domain”. Given the type t windfield as in Listing 2.6, we can define dynamic prognostic
variables for every domain in the following way:

Listing 2.7: Usage of “netsted” derived types

INTEGER , PARAMETER :: NDOMAIN_MAX =5

TYPE t_global_dynvars

TYPE(t_windfield) :: hwind ! [m/s] horizontal winds

REAL(wp) :: temp ! [K] temperature

END TYPE t_global_dynvars

TYPE(t_global_dynvars) :: global_dynvars(NDOMAIN_MAX)

If we would like to access the zonal wind at longitude and latitude index ilon, ilat, and level
index ilev of domain 1 ≤ jdom ≤ NDOMAIN MAX, we can do that by

global_dynvars(jdom)%hwind%u(ilon ,ilev ,ilat)

We can pass global dynvars to a subprogram <sub1>, but we can also pass only a certain
domain jdom (subprogram <sub2>) or even only a certain wind compontent of that domain
(subprogram <sub3>) into any subprogram as demonstrated in Listing 2.8.

Listing 2.8: Passing derived types into subprograms: calls of subroutines

CALL <sub1 >(global_dynvars ,NDOMAIN_MAX ,...)

CALL <sub2 >(global_dynvars(jdom)%hwind ,...)

CALL <sub3 >(global_dynvars(jdom)%hwind%u,nlon ,nlev ,nlat ,...)

2.2. SURVEY OF FORTRAN TECHNIQUES 33

The corresponding definitions of the subprograms which we assume to be subroutines would be
as in Listing 2.9.

Listing 2.9: Passing derived types into subprograms

SUBROUTINE <sub1 >(global_dynvars ,NDOMAIN_MAX)

INTEGER , INTENT(IN) :: NDOMAIN_MAX

TYPE(t_global_dynvars),INTENT(INOUT) :: &

& global_dynvars(NDOMAIN_MAX)

dynvars (1: NDOMAIN_MAX)=<expr >(global_dynvars (1: NDOMAIN_MAX))

END SUBROUTINE <sub1 >

SUBROUTINE <sub2 >(dynvars , nlon , nlev , nlat ...)

INTEGER , INTENT(IN) :: nlon , nlev , nlat

TYPE(t_dynvars), INTENT(INOUT) :: dynvars

dynvars%domain_hwind%u=<expr >(dynvars)

dynvars%domain_hwind%v=<expr >(dynvars)

END SUBROUTINE <sub2 >

SUBROUTINE <sub3 >(u, nlon , nlev , nlat ,...)

INTEGER , INTENT(IN) :: nlon , nlev , nlat

REAL(wp), INTENT(INOUT) :: u(nlon ,nlev ,nlat)

u(1:nlon ,1:nlev ,1: nlat)=<expr >(u(1:nlon ,1:nlev ,1: nlat))

END SUBROUTINE <sub3 >

2.2.3 Recursive derived types

In Fortran 90, it is possible to construct recursively defined types. In this way, it is possible to
create very complex data structures. In particular, it is possible to concatenate derived data
structures in a “list of infinite length”. This means that we do not need to know how long this
list is (how many elements it will contain) at compile time of the program because the list will
be constructed during run time and can be of arbitrary length. One possible application is the
definition of a list which contains the information about the tracers in each list element. This
can be very complex information for each list element like the mass mixing ratio, the chemical
properties, the name, and chemical formula of the tracer. When we need to define a new tracer
during the runtime of the program, we just append it to the end of the existing list. In the
following example, we will present a recursive list each element of which contains the mass
mixing ratio of the tracer only. So, we define a data type that contains a 3d–field for the mass
mixing ratio of the tracer but in addition a pointer that can point to the next element of the
list:

Listing 2.10: Recursive data types

TYPE tracer

REAL(wp), ALLOCATABLE :: xtfield (:,:,:)

TYPE(tracer), pointer :: next

END TYPE TRACER

Let us now define three variables of type tracer.

Listing 2.11: Variables of type tracer to generate a linked list

type (tracer), pointer :: xtracer , firsttracer , lattertracer

34 CHAPTER 2. THE CODE OF ICON

Using the pointer structure of these variables, we can construct a “chain” of tracers of arbitrary
length by the following pointer construct:

Listing 2.12: Linked list of tracers

ALLOCATE (firsttracer)

ALLOCATE (firsttracer%xtfield (nlon , nlev , nlat))

!this allocates a 3--dim field for the mass mixing ratio

lattertracer => firsttracer

DO i=2, ntrac ! ntrac is the number of tracers

ALLOCATE (xtracer)

ALLOCATE (xtracer%xtfield (nlon , nlev , nlat))

lattertracer%next => xtracer

lattertracer => xtracer

END DO

We go step by step through the lines of code of Listing 2.12: firsttracer will be asso-
ciated with some memory, the second statement tells FORTRAN90 to allocate memory for
firsttracer%xtfield that contains the 3d–field of the mass mixing ratio of the first tracer, so
tracer number 1.

Furthermore, lattertracer points to firsttracer, so that we save the information about
where the data of firsttracer are stored in the variable lattertracer.

For i=2:
The first two allocate statements reserve memory for another xtracer component and its asso-
ciated 3d–field of mass mixing ratio. The third statement in the loop now connects the %next

component of firsttracer which was intermediately stored in lattertracer to the actual
(second) tracer. This assures that we can get the actual second tracer by firsttracer%next.
In a last step, we link lattertracer to the actual tracer so that we will be able to associate the
%next component of the actual (second) tracer in a subsequent step to the new (third) tracer.

If we continue our recursive chain over further steps, we see that
firsttracer%next%next%...%next%xtfield (containing %next (n − 1)–times) is the 3d–field
of the n’th tracer of our recursive pointer structure.

In ICON, such linked lists are used for the description of a variable describing the state of the
atmosphere containing different sets of variables depending on the exact model configuration.

2.2.4 Overloading of subprograms

Each subprogram of FORTRAN90 can be interpreted as a mathematical function (mfunction
hereafter) with a set of permissable inputs and outputs. The subprograms become mfunctions
because each element of the input set is connected to exactly one element of the output set.
There may be several elements of the input set connected to the same element of the output
set, but the output element is always unique to each input element. The input and output sets
may be very complex, but they are all finite since each computer operates on finite sets only.
The subprograms can be subroutines or functions. There is a third category, the operators,
that are mfunctions also since they take values of an input set and relate them to exactly one
element of the output set, like the operator “+” or .gt.. We are accustomed to the fact that

2.2. SURVEY OF FORTRAN TECHNIQUES 35

these operators can take real or integer values, but the internal implementation may be different
for different FORTRAN types of input. Generally, there are type specific implementations of all
these mfunctions. We consider as an example the implementation of

+irr :

{
Zc × Rc → Rc

(i, x) 7→ y
(2.1)

The symbols Zc and Rc denote the set of integer numbers and real numbers that can be rep-
resented in the computer and are finite sets in both cases. The operation “+irr” comprises the
conversion of i into a real type, then the addition of two real numbers and the storage of the
result, a real number. If we would like to add two integer numbers and get an integer number
as result, no type conversion is necessary and the algorithm of adding two integer numbers
for an mfunction +iii is used. In the case of the operator “+”, FORTRAN uses the correct
respective implementation according to the input types. This is called “overloading”: In fact,
the symbol “+” stands for the implementation of many mfunctions, e.g. +irr : Zc × Rc → Rc

or +iii : Zc × Zc → Zc. For the cosine function, it is similar: According to the input and out-
put type, an implementation giving the result in the desired accuracy is chosen by FORTRAN
without that the programmer has to think of the exact implementation.

In FORTRAN90, the user can himself define overloaded subroutines, functions or operators.
The user can even extend existing operators. Here are some examples.

Printing a value of a variable

In SRC/shared/mo exception.f90, there is a subroutine print value for printing either logical
or integer, or real values. This subroutine is connected to the respective implementations by

INTERFACE print_value ! report on a parameter value

MODULE PROCEDURE print_lvalue ! logical

MODULE PROCEDURE print_ivalue ! integer

MODULE PROCEDURE print_rvalue ! real

END INTERFACE

The respective interfaces of the subroutine are:

SUBROUTINE print_lvalue (mstring , lvalue)

CHARACTER(len=*), INTENT(IN) :: mstring

LOGICAL , INTENT(IN) :: lvalue

SUBROUTINE print_ivalue (mstring , ivalue)

CHARACTER(len=*), INTENT(IN) :: mstring

INTEGER , INTENT(IN) :: ivalue

SUBROUTINE print_rvalue (mstring , rvalue)

CHARACTER(len=*), intent(in) :: mstring

REAL(wp), INTENT(IN) :: rvalue

The program chooses one of these three implementations according to the type of the second
argument when print value is called.

36 CHAPTER 2. THE CODE OF ICON

Reading data from files

For various purposes, arrays of data have to be read into ICON. E.g. 3d–ozone concentrations,
2d–sea surface temperatures, or arrays of parameters describing the aerosol distribution or pa-
rameters for the radiative transfer calculation. The reading from netcdf–files is performed by
the subroutines collected in ∼icon/io/shared/mo read interface.f90. Although there exists
only one implementation for most of the subroutines, they are often defined using the interface
technique as explained above. The most important subroutines to read data from netcdf files are
those to read a time slice of a 2d– or 3d–array (read 2D time and read 3D time, respectively)
and the reading of a 1d–, 2d–, 3d–array (read 1D, read bcast REAL [23] D). In order to get
the exact interfaces of these subroutines, we have to search for the names under which their
implementation can be found. Of the last three routines, only read 1D has an interface:

INTERFACE read_1D

MODULE PROCEDURE read_bcast_REAL_1D

END INTERFACE read_1D

The definition is as follows:

SUBROUTINE read_bcast_REAL_1D(file_id , variable_name , &

& fill_array , return_pointer)

INTEGER , INTENT(IN) :: file_id

CHARACTER(LEN=*), INTENT(IN) :: variable_name

REAL(wp), TARGET , OPTIONAL :: fill_array (:)

REAL(wp), POINTER , OPTIONAL :: return_pointer (:)

A more detailed description of reading data is given in section 2.3.7.

Comparison of dates and times, example of an extended operator

DT– and TI–variables are handled by the external library mtime that is written in C. The cource
code is stored in ∼icon/externals/mtime/src. A basic documentation via doxygen is avail-
able in ∼/icon/externals/mtime/doc. The link to fortran90 is given through the modules in
∼/icon/externals/mtime/src/libmtime.f90. All entities that can be used in fortran90 code
are collected in several modules there that are finally all integrated into one single module mtime
that serves as “central module”. The operators +, -, >, <, <=, >=, ==, /= can be used to add, sub-
tract or compare two variables of DT–type and are first collected in module mtime timedelta.
Since the latter is included in module mtime, the use statement has to be as follows:

Listing 2.13: Use statement for the extensions of various operators for DT–variables

USE mtime , ONLY: datetime , operator (+), operator(-), &

& operator(>), operator(<), operator (>=), &

& operator (<=), operator (==), operator (/=)

All DT–variables are of type datetime in icon, e.g.

Listing 2.14: Usage of type datetime

TYPE(datetime) :: emission_start , actual_datetime

2.3. MODIFYING THE ICON CODE 37

You can now use an operator to check whether the actual date and time actual datetime is
before or after the date emission start when the emissions should start:

Listing 2.15: Usage of extended operators for DT–variables

IF (emission_start <= actual_date) THEN

perform emissions
ELSE

do nothing
END IF

How DT–variables can be set from namelist entries will be explained later (see Sec. 2.3.6).

There are other extension to some of the above operators programmed in other modules, e.g. in
SRC/shr horizontal/mo delaunay types.f90. It is even possible to use several of these exten-
sion in one module by the inclusion of the respective operator in several use statements.

2.2.5 Recursive subprograms

In any subprogram subroutine or function, it is possible to call the same subprogram
again if it is declared to be a recursive subprogram. Such a recursive subroutine is used
in the nonhydrostatic dynamical core for the time integration. The syntax is the following
(SRC/atm dyn iconam/mo nh stepping.f90):

RECURSIVE SUBROUTINE integrate_nh (datetime_current , jg, &

& nstep_global , dt_loc , num_steps)

...

CALL integrate_nh(datetime_current , jgc , &

& nstep_global , dt_sub , nsteps_nest)

...

END SUBROUTINE integrate_nh

Be aware that it is very easy to program infinite loops in this way, if there is not a proper exit
condition.

2.3 Modifying the ICON code

In most of the cases, you will not modify the core routines of ICON, but have a rather well
defined “add–on” project to realize inside the ICON code. Such an “add–on” project can be the
implementation of new diagnostic variables, new parametrizations for the composition of the
atmosphere, the implementation of (hypothetical) trace gases (“tracers”) from the transport of
which you will learn something about the “physics” processes, or the modification of existing
physics parametrizations. All these tasks have in common that you will not change the structure
of ICON fundamentally but use the existing structure to read new variables or data fields, modify
existing processes and to add new output.

The modification of existing processes is a very special task and cannot be the subject of this
course since it concerns the modification of the parametrized equations that have to be under-
stood also in terms of their physics content. On the other hand, this course is an attempt to
provide knowledge that helps you to perform some standard tasks and use some of the important
data structures.

We will discuss the following tasks in some detail:

38 CHAPTER 2. THE CODE OF ICON

(i) Writing (error) messages

(ii) Introduction of your own namelist

(iii) Representation of 2d– and 3d–fields in ICON, usage of geographical coordinates, data
structures in the dynamics and physics part of ICON

(iv) Introduction of new processes into the physics part of ICON

(v) Usage of time variables

(vi) Reading data from netcdf files

(vii) Implementation of a new output stream

Except of (vi), we will test our new skills in the implementation of a new passive tracer, emitted
at a user defined location. The explanations in the course will treat the more general case and
be rather abstract. It is your task to put them alive during the accompanying practical work on
the computer and use them in an example.

In general, we would like to avoid any unnecessary modification of the original ICON code and
therefore collect all necessary subprograms for a new feature in few separate modules. The
original ICON code will then be modified by some added USE statements and calls of those
subroutines. The advantage of this method is that it allows easy updating of the original ICON
code and makes a clear separation between your new feature and ICON. All these develop-
ments should be done on a personal workstation and intensive tests of the code are necessary
before it can be sent to any supercomputer, although mistral can also be used for tests and
code development if you use appropriate compiler options. Technical tests must comprise at
least tests of vectorization, parallelization, and the restart facility. They can be performed
on the standard atm amip test experiment by the use of the icon dev.checksuite script in
∼icon/run/checksuite.icon dev:

Listing 2.16: Testing of the ICON code — exp.atm amip test

icon_dev.checksuite -c -m rnmo

The option -c is for switching on colour output, -m defines the test mode, rnmo standing for
restart, nproma, mpi, and openmp test. You can omit one of these tests and perform a subset
of tests only. The -h option shows the usage of the test script. A comprehensive documentation
can also be found in [3].

Here are a few words about generalities for the implementation of new features in ICON. Our goal
is to write computationally efficient and easily readable code. In some cases, these two goals may
be mutually exclusive, but we have to find a good compromise. A good code documentation
is therefore very important and often neglected. The consequence is that some code will be
abandoned and written again (without documentation) because nobody understands the original
code.

A good documentation consists of several “parts”:

(i) Comments in the code that help the reader to understand the code. Personally, I prefer
to have a minimum of comments in the code itself because I still like to “see” the code
and not just the comments. Good code should also be self–explanatory up to a certain
degree. However, it is important to comment the meaning of the dummy parameters of
subprograms and to give some summary of what the code actually does.

2.3. MODIFYING THE ICON CODE 39

(ii) It is particularly important to write a “scientific documentation” describing the respective
equations and numerical methods you used in your new feature. This must include the
description of tests you performed on the code. This is the documentation of your work
and the basis of any discussion with your supervisor. A more condensed version of this
documentation should be included into the scientific documentation of ICON as soon as
your feature becomes an official part of ICON. There is still no comprehensive version of
a scientific description of the ICON code.

(iii) A “technical documentation” is the description of the subprograms and their connection
with the ICON code. It is particularly important to document the dummy parameters
of subprograms and all namelist parameters if others are expected to use them. This
documentation should be included into the user guide [3] as soon as your new feature
becomes an official part of ICON. The technical documentation should be as concise as
possible. Try to organise it such that it is easy to find the description of the various
subprograms, variables and namelists.

Most of the new features have a program part that does not depend on time and can be per-
formed outside the time integration loop, as for instance reading namelists and files, or certain
preliminary computations. Other computations depend on time and must be performed inside
the time integration loop. In terms of the overall performance of ICON, it is important to
separate these tasks. Typically, you will have the following three steps for new features in the
atmospheric part with ECHAM physics:

(i) Reading of input namelists: Call your subprogram in read atmo namelists of
SRC/namelists/mo read namelists.f90

(ii) Time independent calculations: Call your subprogram in init echam phy of
SRC/atm phy echam/mo echam phy init.f90

(iii) Calculations inside the time loop have to be inserted into echam phy main of
SRC/atm phy echam/mo echam phy main.f90 at the appropriate place.

2.3.1 Messages and error messages in ICON

Sometimes, messages or even error messages have to be printed, when ICON produces an error.
This is not trivial in a highly parallelized code since you do not want that your error (error)
message is printed several hundred times. There are several subroutines available to perform
this task, all defined in SRC/shared/mo exception.f90. We present message here, that writes
a message text but continues the execution of the program. The syntax is:

Listing 2.17: The message subroutine to output messages and continue the execution of the
ICON code

SUBROUTINE message (name , text , out , level , all_print ,

adjust_right)

CHARACTER (len=*), INTENT(in) :: name

CHARACTER (len=*), INTENT(in) :: text

INTEGER , INTENT(in), OPTIONAL :: out

INTEGER , INTENT(in), OPTIONAL :: level

LOGICAL , INTENT(in), OPTIONAL :: all_print

LOGICAL , INTENT(in), OPTIONAL :: adjust_right

40 CHAPTER 2. THE CODE OF ICON

The formal parameters name should name the subprogram calling message, text being the
message you like to print. All other parameters are optional. You can determine another output
device than the standard error output with out. The level variables allows you to choose
among previous prefixes to the message like “INFO”, “WARNING” etc.. You can find the
possible values in the definition of message. The variable all print triggers which processors
print your message. Your text may be adjusted to the right by setting adjust right.

If a severe error occurs, the ICON program should stop it’s execution. If this is not done
properly, some processors may wait in vain for results from other processors and waist computer
time. In order to print a message and stop the ICON program, use finish:

Listing 2.18: The finish subroutine to print a message and stop the ICON program

SUBROUTINE finish (name , text , exit_no)

CHARACTER(len=*), INTENT(in) :: name

CHARACTER(len=*), INTENT(in), OPTIONAL :: text

INTEGER , INTENT(in), OPTIONAL :: exit_no

Similar to the message subroutine, name should be the name of the calling subprogram and
test an error message. The variable exit no prints a prefix FATAL ERROR if it is equal to one,
no prefix otherwise.

2.3.2 Set up the configuration of your feature – Introduction of your own
namelist

We assume that you already created a module for your feature SRC/*/mo <nfeature>.f90. In
this module, you should provide a derived type t <nfeature> the components of which comprise
all namelist variables. We declare a variable of this new type and make it public by

TYPE t_<nfeature >

type (<...>) :: <var1 >

type (<...>) :: <var2 >

...

END TYPE t_ <nfeature >

PUBLIC :: <nfeature >_config

TYPE(t_<nfeature >) :: <nfeature >_config

Our next task will be to assign values to all of these components, either by setting default values
or by replacing them by values read from the input namelist.

All modules reading namelists are collected in the directory SRC/namelists. For
the introduction of your own namelist <yrnlist> nml, create a new module
SRC/namelists/mo <yrnlist> nml.f90. In this module, declare all namelist variables as
module variables and the namelist itself. You declare a namelist by the NAMELIST statement as
shown in Listing 2.19. Furthermore, we USE the configuration variable <nfeature> config.

Listing 2.19: Namelist module – Declaration of namelist

USE mo_ <nfeature >, ONLY: <nfeature >_config

NAMELIST /<yrnlist >_nml/ <var1 >, <var2 >, ...

2.3. MODIFYING THE ICON CODE 41

<type1 > :: <var1 >

<type2 > :: <var2 >

...

Our next task is to assign default values, read the namelist from an input file, make sure that
these values are available to all processors and documented in a file nml atmo.log, and write the
namelist to some special file for eventual restarts. The strategy in ICON is, that namelists are
read by all processors such that it is not necessary to send the values from an i/o processor to all
other processors. We go through all these steps now that have to be performed in a subroutine
read <yrnlist> namelist:

Assignment of default values: The first step is to assign default values to <var1>, <var2>,
.... These values will be copied to the corresponding components of <nfeature> config

at the end of this subroutine.

Reading in case of a restart: If the particular run is a restart, so a continuation of a simu-
lation, we have to open the file with the respective namelist and read the namelist. This
is done by the following commands:

Listing 2.20: Read namelist in restart

USE mo_master_config , ONLY: isRestart

USE mo_restart_namelist , ONLY: open_and_restore_namelist ,&

& close_tmpfile

...

SUBROUTINE read_ <yrnlist >_namelist (filename)

CHARACTER(LEN=*), INTENT(IN) :: filename

INTEGER :: funit

...

IF (isRestart ()) THEN

funit = open_and_restore_namelist(’<yrnlist >_nml’)

READ(funit ,NML=<yrnlist >_nml)

CALL close_tmpfile(funit)

END IF

...

END SUBROUTINE read_ <yrnlist >_namelist

It seems to the author that you read the actual namelist even in a restart. Thus, you have
the possibility to change your namelist values when a restart is performed.

Reading the namelist in case of an initial run: We have to open the file containing our
namelist, find it there and read it. In addition, we have to write the default values of the
namelist and the actual settings to a temporary file from which the documentation file
nml atmo.log will be created. The following commands are used for this purpose:

Listing 2.21: Read namelist in initial run

USE mo_namelist , ONLY: position_nml , POSITIONED , &

& open_nml , close_nml

USE mo_mpi , ONLY: my_process_is_stdio

USE mo_nml_annotate , ONLY: temp_defaults , temp_settings

USE mo_io_units , ONLY: nnml

...

42 CHAPTER 2. THE CODE OF ICON

INTEGER :: iunit , ist

...

IF (my_process_is_stdio ()) THEN

iunit = temp_defaults ()

! write defaults to temporary text file

WRITE(iunit , <yrnlist >_nml)

END IF

CALL open_nml(TRIM(filename))

CALL position_nml(’<yrnlist >_nml’,STATUS=ist)

SELECT CASE (ist)

CASE (POSITIONED)

! read actual values from file

READ (nnml , <yrnlist >_nml)

IF (my_process_is_stdio ()) THEN

iunit = temp_settings ()

! write actual values to temporary text file

WRITE(iunit , <yrnlist >_nml)

END IF

END SELECT

CALL close_nml

Write actual values for restart: The namelist is stored in a file
NAMELIST <expname> restart {atm,lnd} for the atmosphere and the land by the
following commands:

Listing 2.22: Store namelist for restart

USE mo_mpi , ONLY: my_process_is_stdio

USE mo_restart_namelist , ONLY: open_tmpfile , &

& store_and_close_namelist

...

INTEGER :: funit

...

IF(my_process_is_stdio ()) THEN

funit = open_tmpfile ()

WRITE(funit ,NML=<yrnlist >_nml)

CALL store_and_close_namelist(funit , ’<yrnlist >_nml’)

ENDIF

Fill configuration data structure: The last step is to fill in the configuration data structure
<nfeature> config. This means that the values of all namelist variables <var1>, <var2>,
... have to be assigned one by one to the components of the variable <nfeature> config

of derived type t <nfeature>. Note that the variables <var1>, <var2>, ... contain either
the default values or the values read from the namelist. When you do this assignment, it is
a very good idea to test for the validity of the values which may come from the namelist file
and be as such erroneous. If erroneous values appear, we have to terminate the program
with an appropriate error message. Writing the values of the variables (integer, real, or
logical values) to the standard output can be done by the print value subroutine discussed
in Sec. 2.2.4. If you like to include values of variables into a longer error message, you
have to convert them into a string first. Here is the recipe:

Listing 2.23: Conversion of non–character variables (single values) into a string

2.3. MODIFYING THE ICON CODE 43

USE mo_impl_constants , ONLY: MAX_CHAR_LENGTH

...

CHARACTER(LEN=MAX_CHAR_LENGTH):: c<var1 >

...

WRITE(c<var1 >,*) <var1 >

The actual error message can be written by the use of the subroutine finish that also
terminates the ICON run:

USE mo_exception , ONLY: finish

...

CALL finish(’<subprogram >:<module_name >’,’error_message ’)

As the very last step, we have to introduce our new subroutine read <yrnlist> namelist

into the ICON code so that it is executed at a certain point when all the
namelists are read. The right place is the subroutine read atmo namelists of module
SRC/namelists/mo read namelists.f90 or an analogue for the ocean or land model. You
have to add only two lines to mo read namelist.f90:

Listing 2.24: Call of reading namelist in ICON

USE mo_ <yrnlist >_nml , ONLY: read_ <yrnlist >_namelist

...

CALL read_ <yrnlist >_namelist (atm_namelist_filename)

...

This minimizes modifications of the original ICON code and helps to keep updates to new
ICON versions fairly easy. Where exactly you have to call the reading of your namelist inside
mo read namelists.f90 may depend on its possible interference with other namelist.

2.3.3 Representation of 2d– and 3d–fields in ICON, geographical coordinates

We first consider a 2d–field that depends on the geographical position only. There is no obvious
order of the cells in a 2d–array like indexing them according to longitudes and latitudes. Instead,
we just order the cells in a deliberate way and index them in this order with ascending integer
numbers. This means that our 2d–field becomes a 1d-array depending on the cell indices. Such
arrays are associated with the centres of the triangular grid cells. We do that in a similar way
for the edges and vertices of the triangles. If we need a vertical dimension for a 3d–field we get
2d–arrays, the first index being the cell (or edge or vertex) index, the second index being the
height level.

We may have a global grid and a region with a certain refinement and an even finer grid inside
the first refinement. In that case, we would say that we have three domains: The global domain
and the two domains of the refinement. On each model domain, we need the same collection
of 2d– and 3d–fields in 1d– or 2d–arrays <var1>, <var2>, ... in order to describe the state of
the atmosphere. They may be prognostic variables or also diagnostic variables, this does not
matter at this point. The idea is to collect all these 2d– and 3d–fields <var1>, <var2> in one
datastructure field of type t field and create a vector field(1:ndomain) such that each
field element field(i) for domain i = 1, ndomain is of type t field. Then, each component
field(i)%<var1> is a 1d– or 2d–array hosting a 2d– or 3d–field depending on the cell (or edge or

44 CHAPTER 2. THE CODE OF ICON

vertex) index and in the second dimension on the vertical levels if there is a vertical dimension.
If we would do it exactly like this, we would have each domain on one processor and we would
have very long arrays at high resolution. The number of cells would be Nr2b9 ≈ 2.097 × 107

for example. Since it may be difficult to store such long vectors on one processor, we must
think about a reduction of the vector length on each processor involved in the computation.
The first remedy for this problem is to distribute each model domain onto several processors.
This means that we have only certain regions of a domain on each processor. However, even
using 1, 000 processors, would reduce the number of cells to ≈ 2.097 × 104 only. That’s still
about 21, 000 cells on each processor. Such high vector lengths can considerably slow down the
computations on certain computer architectures. We therefore need another method to reduce
the vector length further. We will split the long vector into several chunks of a much smaller
length nproma and store the long vector in a 2d–array, the first index counting the elements in
a block, the second index counting the blocks. The last block may be shorter since nproma is
not necessarily a divisor of the number of cells. Fig. 2.2 shows an example with 5 grid cells and
a maximum vector length nproma = 2.

(1) (2) (3) (4) (5)
cell index−→

T (nproma=2)

−→

(1) (2)
(1,1) (2,1)

(3) (4)
(1,2) (2,2)

(5) (–)
(1,3) (2,3)
index inside block−→

↓ block index

Figure 2.2: Vectorization in ICON

The 3d–fields that were stored in 2d–arrays with the cell index as the first dimension and the
second being the vertical coordinate, will be stored in 3d–arrays with the first index counting
the elements in a block, the second index counting the levels and the third index counting the
blocks. The reason is that we would like to pass the blocks one by one to some subprograms
which are called in a loop over the blocks. In that case, we can cut the block index in these
subprograms without any reshape of the arrays.

We will now discuss some important data structures in ICON. It is important to note that all
these data structures have a domain index, such that each vector element contains all information
for a certain model domain. The first variable p patch is an array of length ndomain declared in
SRC/shr horizontal/mo model domain.f90 and contains all important information about the
grid.

Listing 2.25: Grid information as stored in p patch

TYPE(t_patch), PUBLIC , TARGET , ALLOCATABLE :: p_patch (:)

TYPE t_patch

...

TYPE(t_grid_geometry_info) :: geometry_info

...

INTEGER :: parent_id

INTEGER :: parent_child_index

...

INTEGER :: n_patch_cells

2.3. MODIFYING THE ICON CODE 45

INTEGER :: n_patch_edges

INTEGER :: n_patch_verts

...

INTEGER :: nblks_c , nblks_e , nblks_v

INTEGER :: npromz_c , npromz_e , npromz_v

INTEGER :: nlev , nlevp1

...

TYPE(t_grid_cells) :: cells

TYPE(t_grid_edges) :: edges

TYPE(t_grid_vertices) :: verts

...

END TYPE t_patch

We explain the “simple” variables first, then the other variables of derived types.

parent id, parent child index: gives the index of the parent domain and the index of this
child to this parent, respectively.

n patch {cells,edges,verts}: contains the number of cells, edges, and vertices of the domain
on your processor, respectively.

nblks {c,e,v}: number of blocks of cells, edges, vertices on this processor, respectively.

npromz {c,e,v}: number of elements in the last block for cells, edges, and vertices on this
processor, respectively.

nlev, nlevp1: Number of “full levels”, this means layers, and half levels, so layer interfaces,
respectively.

The type t grid geometry info is defined in SRC/shr horizontal/mo grid geometry info.f90

and contains geometric information:

Listing 2.26: Type for geometric information t grid geometry info

TYPE t_grid_geometry_info

INTEGER :: cell_type

INTEGER :: geometry_type

...

REAL(wp) :: mean_edge_length ! (meters)

REAL(wp) :: mean_dual_edge_length ! (meters)

REAL(wp) :: mean_cell_area ! (meters ^2)

REAL(wp) :: mean_dual_cell_area ! (meters ^2)

REAL(wp) :: domain_length ! (meters)

REAL(wp) :: domain_height ! (meters)

REAL(wp) :: sphere_radius ! (meters)

REAL(wp) :: mean_characteristic_length ! sqrt(mean_cell_area)

END TYPE t_grid_geometry_info

cell type: In principle, triangular or hexagonal cells are used, the hexagons forming the dual
grid of the triangular grid. This integer variable has either the value of the parameters
triangular cell or hexagonal cell that are defined in the same module

46 CHAPTER 2. THE CODE OF ICON

geometry type: Variable describing the overall geometry of the global domain. The most
important ones are sphere geometry for a sphere, so the sphere of the earth, and
planar torus geometry that is a plane rectangle with doubly periodic boundary con-
ditions.

mean characteristic length: This is equal to ∆rnbm .

The type t grid cells of SRC/shr horizontal/mo model domain.f90 gives us information
about the grid cells themselves, in particular about their geographical coordinates and Coriolis
parameter:

Listing 2.27: Information about grid cells provided by the type t grid cells

TYPE t_grid_cells

...

TYPE(t_geographical_coordinates), ALLOCATABLE :: center (:,:)

REAL(wp), POINTER :: area (:,:)

REAL(wp), ALLOCATABLE :: f_c(:,:)

...

END TYPE t_grid_cells

Each component of this datastructure is a 2d–array, the first index counting the elements in a
block of cells and the second index counting the blocks.

center: The type t geographical coordinates contains as components only the real variables
lon and lat that give the longitude and latitude of the cell center in radiant (not in
degree!). The type is declared in SRC/shared/mo math types.f90

area: Gives the surface (area) of each grid cell.

f c: Coriolis parameter at the cell centres.

The types t grid edges and t grid vertices contain similar information as the type
t grid cells but for edges and vertices, respectively.

Finally, the geographical coordinates of the cell centres can be used by

Listing 2.28: Geographical coordinates of cell centres

USE mo_model_domain , ONLY: p_patch

...

! jg: domain index

DO jb=1,nblks_c

DO jc=1,kproma ! actual block length

lon(jc ,jb)=p_patch(jg)%cells%center(jc ,jb)%lon

lat(jc ,jb)=p_patch(jg)%cells%center(jc ,jb)%lat

END DO

END DO

The maximum block length nproma has to be used from mo parallel config:

Listing 2.29: Usage of maximum block length nproma

USE mo_parallel_config , ONLY: nproma

2.3. MODIFYING THE ICON CODE 47

2.3.4 Data structure containing physics and dynamics variables

The state of the atmosphere is described by a set of 2d– and 3d–fields that are either prognostic
(integrated over time) or diagnostic (determined by all prognostic variables, boundary condi-
tions, and the composition of the atmosphere) variables. These variables are all collected in one
big data structure. The advantage is that “the state” can be easily passed to any subprogram
with one argument. Furthermore, this data structure contains all information about “output
properties” of these fields, i.e. the names of these variables can be used in any output file.

The structure of this derived type is similar to the variable p patch: We have a vec-
tor of n domain elements of the derived type t echam phy field for the variables at
various time “levels” t, t + ∆t, and of derived type t echam phy tend for the ten-
dencies, so the derivative with respect to time for the prognostic variables defined in
SRC/atm phy echam/mo echam phy memory.f90:

Listing 2.30: Variables describing the state of (ECHAM) physics in ICON

TYPE(t_echam_phy_field),ALLOCATABLE ,TARGET :: prm_field (:)

TYPE(t_echam_phy_tend),ALLOCATABLE ,TARGET :: prm_tend (:)

Here is a list of the more important fields being components of these datastructures:

Listing 2.31: Components of prm field and prm tend all at t if not stated differently

TYPE t_echam_phy_field

REAL(wp),POINTER :: &

& clon (:,:), &!< [rad] longitude at cell center

& clat (:,:), &!< [rad] longitude at cell center

& areacella (:,:), &!< [m2] atmosphere grid -cell area

& zh (:,:,:), &!< [m] geometric height at half

levels

& zf (:,:,:), &!< [m] geometric height at full

levels

& dz (:,:,:) !< [m] geometric height of layer

& ua (:,:,:), &! [m/s] zonal wind

& va (:,:,:), &! [m/s] meridional wind

& vor (:,:,:), &! [1/s] relative vorticity

& ta (:,:,:), &! [K] temperature at

& tv (:,:,:), &! [K] virtual temperature

& qtrc (:,:,:,:) ,&! [kg/kg] tracer mass mixing ratio

& qx (:,:,:), &! [kg/kg] total concentration of

! hydrometeors

& omega (:,:,:), &! [Pa/s] vertical velocity

& geoi (:,:,:), &! [m2/s2] geopotential at half levels

& geom (:,:,:), &! [m2/s2] geopotential at full levels

& presi_old (:,:,:), &! [Pa] pressure at half levels

& presm_old (:,:,:), &! [Pa] pressure at full levels

& presi_new (:,:,:), &! [Pa] pressure at half levels t+ ∆t
& presm_new (:,:,:), &! [Pa] pressure at full levels t+ ∆t

...

& aclc (:,:,:), &!< [m2/m2] cloud area fractional

& aclcov (:, :), &!< [m2/m2] total cloud cover

48 CHAPTER 2. THE CODE OF ICON

...

END TYPE t_echam_phy_field

TYPE t_echam_phy_tend

REAL(wp), POINTER :: &

...

& ta (:,:,:) , & ! temperature tendency

& ta_dyn (:,:,:) , & ! due to resolved dynamics

& ta_phy (:,:,:) , & ! due to parameterized processes

& ta_cld (:,:,:) , & ! due to large scale cloud processes

& ta_cnv (:,:,:) , & ! due to convective cloud processes

& ta_vdf (:,:,:) , & ! due to vertical diffusion

& ta_sso (:,:,:) , & ! due to sub grid scale orography

& ta_gwh (:,:,:) , & ! due to non -orographic grav. waves

& ta_rsw (:,:,:) , & ! due to shortwave radiation

& ta_rlw (:,:,:) , & ! due to longwave radiation

...

& qtrc (:,:,:,:), & ! tracer tendency

...

END TYPE t_echam_phy_tend

The tracer fields prm field%qtrc(:,:,:,:) have as dimensions the index describing the posi-
tion of a cell in a block, the levels, the number of the block and as fourth dimension the tracer
index. In the standard ECHAM physics, only 3 tracers are used for water vapour, cloud wa-
ter, and cloud ice. The tendencies are given in the units of the respective quantity per second,
e.g. the temperature tendency would be in K/s. There are various tendencies: the tendency over
all processes and tendencies stemming from single processes like dynamics <var> dyn, overall
physics, i.e. all parameterized processes <var> phy, large scale cloud processes <var> cld, con-
vective cloud processes <var> cnv, vertical diffusion <var> vdf, subgrid scale orographic effects
<var> sso and non–orographic <var> gwh gravity waves. For temperature, there are also the
tendencies due to solar (shortwave) and thermal (longwave) radiation ta rsw and ta rlw, re-
spectively. The variables <var> are temperature ta, the zonal and meridional winds ua and va,
the mass mixing ratio of tracers qtrc containing at least the tracers water vapour, cloud water
and ice, respectively.

All these variables can be written to output files by either giving their names as
they appear in subsequent calls to the subroutine add var (search for field%<var> in
mo memory echam phy.f90. For the tendencies, you search for tend%<var> and use the name
in the add var subroutine preceeded by prefix. The prefix is tend in that case, so that the
overall temperature tendency being under tend%ta in an add var call can be written to the
output under the name tend ta.

In a similar way, there is a vector p nh state(1:n domain) containing the dynamic state. In
that case, this means all variables that have to be integrated over time. Its type t nh state is
declared in SRC/atm dyn iconam/mo nonhydro types.f90:

Listing 2.32: Type t nh state for the description of the state of the nonhydrostatic atmosphere

TYPE t_nh_state

TYPE(t_nh_prog), ALLOCATABLE :: prog (:) !dimension: time

levels

TYPE(t_nh_diag) :: diag

2.3. MODIFYING THE ICON CODE 49

...

TYPE(t_nh_metrics) :: metrics

END TYPE t_nh_state

The array prog contains elements of type t nh prog for each time slice that is needed for the
time integration. For the nonhydrostatic standard time integration, the number of time slices
is two, time t for the current time and t + ∆t for the prediction. In contrast to the prognostic
variables, the diagnostic variables must be known at the current time only, therefore diag is not
an array.

The type t nh prog contains the following components:

Listing 2.33: Type t nh prog that hosts the prognostic variables

TYPE t_nh_prog

REAL(wp), POINTER ::&

w(:,:,:), & ![m/s] orthogonal vertical wind

vn(:,:,:), & ![m/s] orthogonal normal wind

rho(:,:,:), & ![kg/m^3] density

exner (:,:,:), & ![-] Exner pressure

theta_v (:,:,:), & ![K] virtual potential temperature

tracer (:,:,:,:), & ![kg/kg] tracer concentration

tke (:,:,:) ![m^2/s^2] turbulent kinetic energy

...

END TYPE t_nh_prog

The orthogonal normal wind is given at the midpoints of the triangle edges and is measured
orthogonal to the edges. All other quantities are given at the centres of the triangles. The
density is therefore given as

Listing 2.34: Density of the atmosphere as state variable of the nonhydrostatic dynamic core

p_nh_state (1: n_domain)%prog (1:2)%rho(1:nproma ,1:nlev ,1: nblks_c)

Here, the index of p nh state represents the model domain, the index of prog the time (either
t or t + ∆t). The first index of rho is the number of the cell in the block, the second index
represents levels and the third index the number of the block. Note that the number of blocks
(nblks c here) is different for variables given at the centre or edges or vertices of the triangles,
even if the length of the block nproma is chosen to be the same for all these variables.

The type t nh diag is more interesting for us since it contains a lot of diagnostic variables from
the dynamics:

Listing 2.35: Type t nh diag containing diagnostic variables from the dynamics

TYPE t_nh_diag

REAL(wp), POINTER :: &

& u(:,:,:), & ! [m/s] zonal wind

& v(:,:,:), & ! [m/s] meridional wind

...

& omega_z (:,:,:), & ! [1/s] relative vertical vorticity

! at dual grid (at vertices)

& vor(:,:,:), & ! [1/s] relative vertical vorticity

50 CHAPTER 2. THE CODE OF ICON

! interpolated to cells

! some tendencies

...

& temp (:,:,:), & ! [K] temperature

& temp_ifc (:,:,:), & ! [K] temperature at half levels

...

& dpres_mc (:,:,:), & ! [Pa] ‘‘pressure thickness ’’

...

& airmass_now (:,:,:), & ! [kg/m^2] air mass actual time step

& airmass_new (:,:,:), & ! [kg/m^2] air mass new time step

...

! variables needed for grid nesting

END TYPE t_nh_diag

The winds are interpolated to the cell centres in that case. A “pressure thickness” is given that
can be used to calculate the approximate mass of a grid cell, but it is better to use the air mass
variables directly.

2.3.5 Introduction of new processes into ECHAM physics

All ECHAM physics processes are called in SCR/atm phy echam/mo echam phy main.f90. How-
ever, as we already saw in the namelist mpi phy nml, each process can have its individual calling
frequency and start and end date and time. We discuss first how to introduce these process
specific variables into SRC/configure model/mo mpi phy config.f90. There are two relevant
variables (i) mpi phy config of type t mpi phy config containing the entries read from the
namelist mpi phy nml and (ii) mpi phy tc of type t mpi phy tc containing the same informa-
tion as mpi phy config but in a form that can be handled by the mtime library.

For each process <prc> (all processes have to be identified by three letters), the following three
variables must be added as components in the declaration of t mpi phy config:

Listing 2.36: Specific components of t mpi phy config for a process <prc>

CHARACTER(len=max_timedelta_str_len) :: dt_ <prc >

CHARACTER(len=max_datetime_str_len) :: sd_ <prc >

CHARACTER(len=max_datetime_str_len) :: ed_ <prc >

where the component dt <prc> stands for the time interval at which the process will be called,
sd <prc> and ed <prc> stand for the start and end date between which the process <prc> will
be called.

The type t mpi phy tc has four corresponding components for each process <prc>:

Listing 2.37: Specific components of t mpi phy tc for a process <prc>

TYPE(timedelta), POINTER :: dt_ <prc >

TYPE(datetime), POINTER :: sd_ <prc >

TYPE(datetime), POINTER :: ed_ <prc >

TYPE(event), POINTER :: ev_ <prc >

where dt <prc> is again representing the time intervall at which process <prc> is called,
sd <prc> and ed <prc> again represent the start and end date, and ev <prc> is an “event
variable”, telling ICON whether the process has to be calculated in a certain time step.

2.3. MODIFYING THE ICON CODE 51

The components of mpi phy config have to be initialized with empty strings for all domains for
each specific process <prc> in the subroutine init mpi phy config of mo mpi phy config.f90:

Listing 2.38: Initialization of mpi phy config

mpi_phy_config (:)%dt_ <prc >=’’

mpi_phy_config (:)%sd_ <prc >=’’

mpi_phy_config (:)%ed_ <prc >=’’

These values will be overwritten if they are specified in the mpi phy nml namelist for any do-
main. After that, these values are checked whether the given variables are valid TI– and DT–
variables, respectively. For this purpose, call eval mpi phy config dt sd ed in the subroutine
eval mpi phy config of mo mpi phy config.f90 for every domain and every process <prc>:

Listing 2.39: Check TI– and DT–variables given by namelist mpi phy nml

CALL eval_mpi_phy_config_dt_sd_ed(TRIM(cg), ’<prc >’, &

& mpi_phy_config(jg)%dt_ <prc >, &

& mpi_phy_config(jg)%sd_ <prc >, &

& mpi_phy_config(jg)%ed_ <prc >)

In this call, cg is the domain index transformed into a character of length 2. The loop runs over
jg=1,n dom.

The next step is to convert the string variables into mtime compatible format by a call of
eval mpi phy tc dt sd ed ev in eval mpi phy tc of mo mpi phy config.f90. Also this sub-
routine has to be called for all domains and processes <prc>:

Listing 2.40: Conversion of TI–and DT–variables into mtime compatible format for process
<prc>

CALL eval_mpi_phy_tc_dt_sd_ed_ev(cg , ’<prc >’, &

& mpi_phy_config(jg)% dt_ <prc >, &

& mpi_phy_config(jg)% sd_ <prc >, &

& mpi_phy_config(jg)% ed_ <prc >, &

& mpi_phy_tc (jg)% dt_ <prc >, &

& mpi_phy_tc (jg)% sd_ <prc >, &

& mpi_phy_tc (jg)% ed_ <prc >, &

& mpi_phy_tc (jg)% ev_ <prc >)

Here, cg is again a character of length 2 giving the domain index and this call has to be performed
in a loop for jg=1,n dom.

In principle, this should be sufficient for the functionality of the program. However, writing the
configuration of your program makes debugging easier. You have two print routines, for the
components of mpi phy config and mpi phy tc, both called in print mpi phy config in a loop
over all domains jg=1,n dom:

Listing 2.41: Printing the physics configuration variables

CALL print_mpi_phy_config_dt_sd_ed(cg , ’<prc >’, &

& mpi_phy_config(jg)% dt_ <prc >, &

& mpi_phy_config(jg)% sd_ <prc >, &

& mpi_phy_config(jg)% ed_ <prc >)

CALL print_mpi_phy_tc_dt_sd_ed(cg , ’<prc >’, &

52 CHAPTER 2. THE CODE OF ICON

& mpi_phy_tc(jg)% dt_ <prc >, &

& mpi_phy_tc(jg)% sd_ <prc >, &

& mpi_phy_tc(jg)% ed_ <prc >)

Again, cg is a character of length 2 containing the domain index as a string.

All the above code lines serve to define an additional process only. We now describe how such
a process <prc> is introduced into mo echam phy main. There are two tasks to perform: (i) it
has to be decided whether this process <prc> has to be called at all according to the DT– and
TI–variables and, if it has to be called (ii) the corresponding blocks of columns have to be
passed one by one to the subprogram computing the process <prc>. Step (i) is an evaluation of
if clauses that is done in echam phy main directly. Each process is then wrapped in an interface
routine that performs the block related computations and calls the process according to the
result of the if clauses in step (i). The reason for this complicated separation of tasks is that
the tendencies resulting from process <prc> are added inside the interface routine depending
on the result of the if clauses. We start with the if clauses for step (i) that is performed in
echam phy main:

Listing 2.42: If clauses to evaluate whether a process has to be called or not

IF (mpi_phy_tc(jg)%dt_ <prc > > dt_zero) THEN

is_in_sd_ed_interval = &

& (mpi_phy_tc(jg)%sd_ <prc > <= datetime_old) .AND. &

& (mpi_phy_tc(jg)%ed_ <prc > > datetime_old)

is_active = &

& isCurrentEventActive(mpi_phy_tc(jg)%ev_ <prc >,datetime_old)

CALL message_forcing_action(’process <prc >’, &

& is_in_sd_ed_interval ,is_active)

CALL interface_echam_ <prc >(is_in_sd_ed_interval , &

& is_active , &

& patch , rl_start , rl_end , &

& field , tend , &

& datetime_old)

END IF

Inside the interface subroutine, your physics process has to be called for each block of the actual
domain. Here is an example of such an interface subroutine:

Listing 2.43: Interface routine for calling a physics process

MODULE mo_interface_echam_ <prc >

USE mo_kind ,ONLY: wp

USE mo_model_domain ,ONLY: t_patch

USE mo_loopindices ,ONLY: get_indices_c

USE mo_parallel_config ,ONLY: nproma

USE mo_run_config ,ONLY: nlev

USE mo_echam_phy_memory ,ONLY: t_echam_phy_field ,

t_echam_phy_tend

IMPLICIT NONE

PRIVATE

PUBLIC :: interface_echam_ <prc >

2.3. MODIFYING THE ICON CODE 53

CONTAINS

SUBROUTINE interface_echam_ <prc >(is_in_sd_ed_interval , &

& is_active , &

& patch , rl_start , rl_end , &

& field , tend ,)

LOGICAL ,INTENT(in) ::

is_in_sd_ed_interval

LOGICAL ,INTENT(in) :: is_active

TYPE(t_patch) ,TARGET ,INTENT(in) :: patch

INTEGER ,INTENT(in) :: rl_start , rl_end

TYPE(t_echam_phy_field) ,POINTER :: field

TYPE(t_echam_phy_tend) ,POINTER :: tend

INTEGER :: i_nchdom

INTEGER :: i_startblk ,i_endblk

INTEGER :: jb !< block index

INTEGER :: jcs , jce !< start/end column index within block

i_nchdom = MAX(1,patch%n_childdom)

i_startblk = patch%cells%start_blk(rl_start ,1)

i_endblk = patch%cells%end_blk(rl_end ,i_nchdom)

DO jb = i_startblk ,i_endblk

CALL get_indices_c(patch , jb , i_startblk , &

& i_endblk , jcs , jce , &

& rl_start , rl_end)

IF (is_in_sd_ed_interval) THEN

IF (is_active) THEN

CALL <prc > (jcs , jce , &

& nproma , nlev , &

& <fields >, <tends >)

END IF

! accumulate tendencies

tend%<t>(jcs:jce ,:,jb) = tend%<t>(jcs:jce ,:,jb) + &

<tends >(jcs:jce ,:,jb)

END IF

END DO

END SUBROUTINE interface_echam_o3_cariolle

END MODULE mo_interface_echam_o3_cariolle

The most important steps are to get the indices of the blocks which have to be handled
(i startblk and i endblk). The physics process has then to be called for each of these blocks.
The indices of the elements in one block start at jcs = 1 and run to jce. There should never
occur a jcs 6= 1, but this may change in the future. The variable nproma is the maximum block
length and is normally used to declare 2d–arrays which have the dimensions a(nproma,nlev).
The first if clause (IF (is in sd ed interval)) inside the loop assures that a tendency is added
if and only if we are between the start and end date of the physics process <prc>. The ten-

54 CHAPTER 2. THE CODE OF ICON

dencies <tends> have to be stored over several time steps since they are re–used in subsequent
time steps even if the process is not active, i.e. the tendencies are not re–calculated. In fact,
that is what the second if clause does: Calculate the process if and only if it is also “active”
(IF (is active)), i.e. our actual time step is the time step at which the process has to be
re–calculated according to mpi phy config(jg)%dt <prc>.

2.3.6 Usage of date and time variables

In Section 2.3.5, we already had to handle DT– and TI–variables: They were read as strings from
a namelist, converted to an mtime library compatible format, and used later to decide whether a
physics process <prc> has to be called or not. Another important task is to interpolate external
data representing boundary conditions or parameters to a certain date and time. To this end,
the mtime library has to be used directly.

First, DT– and TI–variables are given as strings in namelists for example. These strings have
maximum lengths as given by the following two integer parameters of mtime

Listing 2.44: Maximum string lengths of DT– and TI–variables

USE mtime , ONLY: max_datetime_str_len , max_timedelta_str_len

The corresponding mtime library compatible formats are

Listing 2.45: mtime library compatible format of DT– and TI–variables

USE mtime , ONLY: datetime , timedelta

Strings containing DT– and TI–variables can be converted to the mtime compatible format by
the newDatetime and newTimedelta functions of mtime:

Listing 2.46: Conversion of DT– and TI–variables from stings into mtime library compatible
format

USE mtime , ONLY: max_datetime_str_len , max_timedelta_str_len

USE mtime , ONLY: datetime , timedelta

USE mtime , ONLY: newDatetime , newTimedelta

CHARACTER(len=max_datetime_str_len) :: my_date_time

CHARACTER(len=max_timedelta_str_len):: my_delta_time

TYPE(datetime), POINTER :: my_date_time_mt

TYPE(timedelta), POINTER :: my_delta_time_mt

my_date_time_mt => newDatetime(my_date_time)

my_delta_time_mt => newDeltatime(my_delta_time)

You can transform variables in mtime compatible format back into strings by the subroutines
datetimeToString and timedeltaToString of mtime:

Listing 2.47: Conversion of mtime library compatible variables into strings

USE mtime , ONLY: max_datetime_str_len , max_timedelta_str_len

USE mtime , ONLY: datetime , timedelta

USE mtime , ONLY: datetimeToString , timedeltaToString

CHARACTER(len=max_datetime_str_len) :: my_date_time

CHARACTER(len=max_timedelta_str_len):: my_delta_time

TYPE(datetime), POINTER :: my_date_time_mt

2.3. MODIFYING THE ICON CODE 55

TYPE(timedelta), POINTER :: my_delta_time_mt

CALL datetimeToString(my_date_time_mt , my_date_time)

CALL timedeltaToString(my_delta_time_mt , my_delta_time)

These strings can then be printed e.g. by the message subprogram.

An often occuring task is the interpolation of external data sets to a certain date and time. Cur-
rently, there is only one method available to determine time interpolation weights corresponding
to a linear interpolation in time with respect to monthly given external data. These data are
expected to be stored in an array with indices related to the months ranging from 0 to 13,
associating the data of December of the predecessor year with index 0 and associating the data
of January of the subsequent year with index 13 (ECHAM physics part). The corresponding
data type is defined in SCR/shared/mo bcs time interpolation.f90:

Listing 2.48: Data type for time interpolation weights

TYPE t_time_interpolation_weights

TYPE(datetime) :: reference_date

REAL(wp) :: weight1 , weight2

...

! MPIM style 0-13 for month indexing

INTEGER :: month1_index , month2_index

LOGICAL :: initialized = .FALSE.

END TYPE t_time_interpolation_weights

The interpolation weights and corresponding indices can be calculated using the function
calculate time interpolation weights of the same module:

Listing 2.49: Calculation of time interpolation weights

FUNCTION calculate_time_interpolation_weights(current_date) &

& RESULT(time_interpolation_weight)

TYPE(t_time_interpolation_weights) :: time_interpolation_weight

TYPE(datetime), POINTER , INTENT(in) :: current_date

In that case, the result of calculate time interpolation weights is of type
t time interpolation weights as defined in Listing 2.48. Thus, the respective compo-
nents of the function give the indices and time interpolation weights.

2.3.7 Reading data from netcdf input files

There are different data sets that may be read into ICON: Parameter data sets consisting of
arrays that have to be known at every grid point, 2d– or 3d–data sets of surface properties
or atmospheric composition, or zonal mean values of data that depend on latitude only. Their
vertical coordinate may be a pressure coordinate or the data may be given at geometric altitudes.
All these data sets may depend on time being “transient” data sets or just following a certain
seasonal cycle or they may be completely time independent. There is no kind of a “boundary
condition tool” handling all these cases in a comprehensive way in ICON. However, we should
think a bit about the problems that may accompany the handling of such data.

Grid independent parameter sets: Grid independent parameter sets have to be known to
each processor and typically contain much less array elements than the grid itself. Even if
they are time dependent, they are the least problematic data sets.

56 CHAPTER 2. THE CODE OF ICON

2d–data sets: At high horizontal resolutions, the data sets can be rather large and if they
change rapidly with time, the reading may be rather time consuming. The problem may
be that the actual ICON resolution is larger than the spatial resolution of the data itself.
If the frequency to read such data sets is high, but their actual resolution much lower than
the ICON resolution, it is worth to think about an “online–interpolation” of the data.

3d–data sets: The problems are similar to the ones of 2d–data sets. In addition, the vertical
coordinate demands interpolation. If these data are to be used in the ECHAM–physics
part, a vertical pressure coordinate can be used since there is a diagnosed hydrostatic
pressure available in this part of the program. But also the geometric height can be used.

zonal mean values: Technically, the easiest way would be to extend and interpolate the zonal
mean values to the ICON grid. However, zonal mean values are often very rough estimates
of a certain quantity (e.g. optical properties of stratospheric volcanic aerosols). This
indicates that the horizontal resolution of such data sets is much lower than the actual
ICON resolution. An extension of such a data set means to blow up the data set without
gaining any information. For a one–hundred year data set, this may then be of the order
of several TB. Reading several TB into a parallel program turns out to be a nightmare
and this cannot be a sensible method anymore. In that case, interpolation inside ICON is
certainly the better option.

I would like to present two basically different read–routines of the module
SRC/io/shared/mo read interface.f90, here. There is a first category of subroutines
that allows the reading of data being on the ICON grid only. These routines use a “distributed”
read and each processor gets its respective part of grid points. There is a second category of
routines reading data on more or less arbitrary grids. For those, it is assumed that the whole
data array has to be known to every processor (typical example are parameter fields). In that
case, they are read on an i/o processor and distributed to all other processors in a second step.

Distributed reading of a field on the ICON grid

The subroutine read 3D time belongs to the first category and is good for the reading
of 3d–data sets on the ICON grid that depend on time in a fourth dimension. This
subroutine has an interface and is implemented under the name read dist REAL 3D time

(SRC/io/shared/mo read interface.f90). The “dist” means “distributed reading”. Here
is the definition:

Listing 2.50: Reading a time–dependent 3d–data field on the ICON grid

SUBROUTINE read_dist_REAL_3D_time(

& stream_id , location , &

& variable_name , fill_array , &

& return_pointer , start_timestep , &

& end_timestep , levelsDimName , &

& has_missValue , missValue)

TYPE(t_stream_id), INTENT(INOUT) :: stream_id

INTEGER , INTENT(IN) :: location

CHARACTER(LEN=*), INTENT(IN) :: variable_name

REAL(wp), TARGET , OPTIONAL :: fill_array (:,:,:,:)

REAL(wp), POINTER , OPTIONAL :: return_pointer (:,:,:,:)

2.3. MODIFYING THE ICON CODE 57

INTEGER , INTENT(in), OPTIONAL :: start_timestep , &

& end_timestep

CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: levelsDimName

LOGICAL , OPTIONAL :: has_missValue

REAL(wp), OPTIONAL :: missValue

Parameters:

stream id: Variable of type t stream id as returned by the function openInputFile (see List-
ing 2.51) describing the netcdf–file.

location: This integer number describes whether your data are associated with cell centres,
vertices, or edge midpoints. It is better to use predefined constants here than to fill
in explicit numbers since these may change. In the module mo impl constants, you
find the integer variables on cells, on vertices, on edges describing whether the data
describe a quantity on the cell centres, the triangle vertices, or the midpoints of the edges,
respectively.

variable name: is the name of the variable in the netcdf–file. In the netcdf–file, this variable
must have the shape (time, nlev, ncells) when looked at it with ncdump with C–style
output.

fill array: If fill array is present, the data will be stored in this field, fill array must
have the right shape to accomodate a 3d–field and the time dimension. It is expected to
have the shape fill array(nbdim,nlev,nblks,time).

return pointer: If this pointer is present, it will be shaped according to
(nbdim,nlev,nblks,time) and contain the data read from file. If fill array is
present at the same time, return pointer is associated with fill array.

start timestep, end timestep: Index of the first and last time step to be read from the
netcdf–file.

levelsDimName: Name of the vertical levels dimension in the netcdf–file. If no name is given,
it will not be checked. It is anyhow assumed that the second dimension of the variable is
the vertical dimension in the necdf–file.

has missValue: If this logical is present, it will be .TRUE. on output if the netcdf–file contains
a global attribute missing value, otherwise it’s .FALSE.

missValue: If this variable is present, it will contain the missing value if the netcdf–file contains
a global attribute missing value

The function openInputFile is an overloaded function and has the following parameter list for
reading one variable in distributed mode from a netcdf–file:

Listing 2.51: Function openInputFile for opening a netcdf file for distributed read

TYPE(t_stream_id) FUNCTION openInputFile_dist(filename , patch , &

& input_method)

CHARACTER(LEN=*), INTENT(IN) :: filename

TYPE(t_patch), TARGET , INTENT(IN) :: patch

INTEGER , OPTIONAL , INTENT(IN) :: input_method

58 CHAPTER 2. THE CODE OF ICON

filename: Name of the netcdf input–file.

patch: This variable of type t patch contains all information of the distribution of a global
variable to the various processors. The type t patch and the variable p patch con-
taining this distribution information of all model domains (refinements) are present in
mo model domain. Actually, p patch(1:ndom) is a vector the elements of which are all of
type t patch (see Sec. 2.3.3).

input method: Integer variable describing whether the files are read on an i/o processor and
distributed then or whether they are read in a distributed way. Use the parameters
read netcdf broadcast method and read netcdf distribute method of mo io config

as to assign input method for the two methods, respectively. The standard should be the
distributed input, in particular at high resolutions.

Reading of a general field sent to all processors after reading

An example for a subroutine to read a general field that is not defined on the ICON grid
and must be sent as a whole to all processors is the subroutine read 1D extdim extdim time

(SRC/io/shared/mo read interface.f90). The parameter list is as follows:

Listing 2.52: Read a general field and send it to all processors

SUBROUTINE read_bcast_REAL_1D_extdim_extdim_time(&

& file_id , variable_name , &

& fill_array , return_pointer , &

& dim_names , start_timestep , &

& end_timestep)

INTEGER , INTENT(IN) :: file_id

CHARACTER(LEN=*), INTENT(IN) :: variable_name

REAL(wp), TARGET , OPTIONAL :: fill_array (:,:,:,:)

REAL(wp), POINTER , OPTIONAL :: return_pointer (:,:,:,:)

CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: dim_names (:)

INTEGER , INTENT(IN), OPTIONAL :: start_timestep , end_timestep

file id: File unit number of input netcdf file as given by the function openInputFile of module
SRC/io/shared/mo read interface.f90, see Listing 2.53.

variable name: Name of the variable in the netcdf file that has to be read.

fill array: 4d–array that will accomodate the field of the netcdf–file. The shape of this array
will be determined by the shape of the variable in the netcdf file or has to have the
corresponding shape.

return pointer: If fill array is present, it will be associated with fill array or will just
contain the input data.

dim names: Must contain the names of the dimensions except the last dimension which has to
be time.

start timestep, end timestep: Index of the first and last time step to be read.

2.3. MODIFYING THE ICON CODE 59

The file id is again provided by openInputFile, but this time, the call is different from the
previous case, and the specific function openInputFile bcast is called by this interface.

Listing 2.53: Function openInputFile for opening a netcdf file for reading on the i/o processor

INTEGER FUNCTION openInputFile_bcast(filename)

CHARACTER(LEN=*), INTENT(IN) :: filename

2.3.8 Defining new “streams”

We already know the datastructures prm field or prm tend. We also know that they are
of derived type and that their components can be written into output files. For this output
mechanism, we need to provide further information to ICON. In fact, the array prm field of
type t echam phy field has a “cousin” prm field list of type t var list that contains a lot
of information for the data handling. Any variable of type t var list maybe called a stream.
The information contained in prm field list can be filled in by calls to certain subprograms.
Let us discuss the type t var list and its “child” t var list intrinsic, first (see Listing 2.54).
It is declared in SRC/shared/mo linked list.f90. You will see that there is a recursive pointer
structure hidden in this type

Listing 2.54: Type t var list for “stream” information

TYPE t_var_list

TYPE(t_var_list_intrinsic), POINTER :: p

END type t_var_list

TYPE t_var_list_intrinsic

...

CHARACTER(len =128) :: name ! stream name

TYPE(t_list_element), POINTER :: first_list_element

! reference to first list element

...

INTEGER :: list_elements ! allocated elements

LOGICAL :: loutput ! output stream

LOGICAL :: lrestart ! restart stream

LOGICAL :: linitial ! initial stream

CHARACTER(len =256) :: filename ! name of file

CHARACTER(len=8) :: post_suf ! suffix of output file

CHARACTER(len=8) :: rest_suf ! suffix of restart file

CHARACTER(len=8) :: init_suf ! suffix of initial file

...

INTEGER :: patch_id

INTEGER :: vlevel_type

...

LOGICAL :: lmiss ! flag: true , if

! variables should be initialized with missval

...

END TYPE t_var_list_intrinsic

The stream has a name being a component of the type t var list intrinsic. In principle
you can search for such a stream by its name, but all these searches include string comparisons

60 CHAPTER 2. THE CODE OF ICON

that are very slow compared to floating point operations. This means, that we should avoid
such searches except during the initialization phase of ICON. The type t var list intrinsic

contains a “linked list” in form of a recursive pointer structure, the first element of which is
first list element. There is further general information that concerns all variables in the
list. It is e.g. indicated the number of allocated list elements at a certain instant in the program
(list elements). Note that this number can change at any time by just adding a new list
element. There are also logical variables indicating whether this stream is written to output
files, restart files or is a stream the variables of which have to be used for initialization. The
patch id indicates the model domain (so the refinement step) to which it belongs. The variable
vlevel type indicates whether it is variables on model levels or pressure levels.

We will inspect the type t list element further. This type is also declared in
SRC/shared/mo linked list.f90 (see Listing 2.55).

Listing 2.55: Types t list element and t var list element for linked lists

TYPE t_list_element

TYPE(t_var_list_element) :: field

TYPE(t_list_element), POINTER :: next_list_element

END TYPE t_list_element

This type is recursive by the fact that it contains next list element of the same type
t list element. The component field is of type t var list element that is declared in
SRC/shared/mo var list element.f90:

Listing 2.56: Type t var list element containing information about individual list elements

TYPE t_var_list_element

REAL(dp), POINTER :: r_ptr (:,:,:,:,:)

INTEGER , POINTER :: i_ptr (:,:,:,:,:)

LOGICAL , POINTER :: l_ptr (:,:,:,:,:)

...

TYPE(t_var_metadata) :: info

TYPE(t_var_metadata_dynamic) :: info_dyn

END type t_var_list_element

The components r ptr, i ptr, and l ptr accomodate the corresponding fields. The redundant
dimensions will be of length one and get the index 1. What is particularly interesting for us, is
the “meta data” information. It contains the following:

TYPE t_var_metadata

...

CHARACTER(len=VARNAME_LEN) :: name

...

TYPE(t_cf_var) :: cf

TYPE(t_grib2_var) :: grib2

...

LOGICAL :: lrestart

LOGICAL :: loutput

LOGICAL :: lrestart_cont

...

TYPE(t_union_vals) :: initval

...

2.3. MODIFYING THE ICON CODE 61

TYPE(t_vert_interp_meta) :: vert_interp

TYPE(t_hor_interp_meta) :: hor_interp

...

LOGICAL :: lmiss ! flag: true , if variable

! should be initialized with missval

TYPE(t_union_vals) :: missval ! missing value

...

END TYPE t_var_metadata

name: Name of the “stream element”. A stream element in that case is a 2d– or 3d–variable
in the simplest form, but can be a whole group of 3d–variables also. E.g. all tracers can
be stored as one variable “tracer”. It is possible to reference them separately by another
data structure.

cf: In this derived type, the metadata for netcdf–format output according to the CF (Climate
and Forecast) conventions can be stored.

grib2: This derived type contains the metadata for output in the GRIB2 (GRIdded Binary
data, version 2) format.

lrestart: is .TRUE. if the stream element has to be written to the restart files, .FALSE. oth-
erwise.

loutput: is .TRUE. if this stream element has to be written to the output file.

lrestart cont: There are variables that must be read from the restart file. On the other hand,
if a kind of a new submodel is switched on while starting from a restart file, the variables
belonging to this submodel are not in the first restart file. Nevertheless, the model should
continue even if these variables do not exist. In that case, the lrestart cont variable can
be set to .TRUE. so that ICON continues although it does not find this stream element in
the restart file. If it is mandatory that the stream element is in the restart file, you must
set lrestart cont = .FALSE..

initval: This variable can be used to assign an initial value to the field of the stream element.
There are three components initval%rval, initval%ival, and initval%lval that will
host the real, integer or logical value according to the types of the fields associated with
this stream element.

{vert,hor} interp: Derived types containing information about the vertical and horizontal
interpolation method. E.g. if the variable is interpolated to pressure levels when it is
written to an output file.

lmiss: When this variable is set to .TRUE. the field of the corresponding stream element is set
to a missing value specified in missval.

missval: This variable has components missval%rval, missval%ival, and missval%lval for
the real, integer and logical fields associated with this stream element. If lmiss is set to
.TRUE., this variable contains the corresponding missing values.

Before we proceed to the recipe how to define a new stream, let us summarize this survey
of data structures associated with streams. We discuss again the example of prm field and
prm field list that are both defined in SRC/atm phy echam/mo echam phy memory.f90:

62 CHAPTER 2. THE CODE OF ICON

TYPE(t_echam_phy_field),ALLOCATABLE ,TARGET :: prm_field (:)

TYPE(t_var_list),ALLOCATABLE :: prm_field_list (:)

We first note that the stream prm field list will be allocated as a vector of length n domain

such that each element is of type t var list. Similarly, prm field has n domain elements of
type t echam phy field. We will see that it would be sufficient to work with prm field list

alone, and prm field is just defined for convenience. Considering prm field list first, we see
that it has one single component p that is in each domain jg:

prm_field_list(jg)%p

This component p contains information about the name of the stream, or whether it is written
to an output file or how many list elements are allocated in domain jg at that position in the
program as shown in the following example, respectively:

prm_field_list(jg)%p%name

prm_field_list(jg)%p%loutput

prm_field_list(jg)%p%list_elements

On the other hand, the component p is the anchor of the linked list:

prm_field_list(jg)%p%first_list_element

This component first list element being of derived type t list element contains two com-
ponents one of which points to the next list element, the second of which contains the information
of the first list element, respectively:

prm_field_list(jg)%p%first_list_element%next_list_element

prm_field_list(jg)%p%first_list_element%field

Inspecting the component field further, we see that its type t var list element contains
multidimensional arrays for hosting the values of the field and other components for metadata
for this stream element, respectively:

prm_field_list(jg)%p%first_list_element%field%r_ptr (:,:,:,:,:)

prm_field_list(jg)%p%first_list_element%field%i_ptr (:,:,:,:,:)

prm_field_list(jg)%p%first_list_element%field%l_ptr (:,:,:,:,:)

!metadata:

prm_field_list(jg)%p%first_list_element%field%info

In the component info, we can find the name of the stream element, a “flag” whether it is written
to the output file or information about the stream element according to the CF conventions or
the GRIB2 data format:

prm_field_list(jg)%p%first_list_element%field%info%name

prm_field_list(jg)%p%first_list_element%field%info%loutput

prm_field_list(jg)%p%first_list_element%field%info%cf

prm_field_list(jg)%p%first_list_element%field%info%grib2

Until now, we were examining the first list element only. If we would like to access the fields of
the i’th list element, this would involve i− 1 times a next list element, so for the real field:

Listing 2.57: Array of i− 1st stream element

prm field list(jg)%p%first list element%

i−1 times︷ ︸︸ ︷
next list element%...%next list element%

2.3. MODIFYING THE ICON CODE 63

%field%r ptr(:, :, :, :, :)

As you notice, the access to the arrays of this linked list hosting 2d– or 3d– variables becomes a
nightmare rather quickly, although this structure is very convenient for the output. This is the
moment the cousin prm field comes into play. In this case, the access to the fields is rather
simple. For the zonal wind in domain jg, we have for example:

Listing 2.58: Zonal wind as member of prm field

prm_field(jg)%ua(:,:,:)

However, we have to ensure that this array “contains the same data” as the corresponding
array of Listing 2.57 assuming that the zonal wind ua is the i’th stream element in the linked
list. “Contains the same data” in this case would mean that we wish that ICON uses the
same memory area under two different access names, the one of Listing 2.57 and the one of
Listing 2.58.

Our next task will be to explain how we can build such a linked list and how we may connect it
to a “simple datastructure” like the prm field. The “simple datastructure” will be referred to
as Fast Access Datastructure (FAD). This datastructure must be accessible from many modules
and may contain a considerable number of 2d– and 3d–arrays. It should be defined in a separate
module in order to avoid circular dependencies in the sequel. A good naming example would
be mo <task> memory.f90. In the same module, the stream or linked list must be defined and
the connection must be established between the FAD and the linked list. We proceed in the
following steps:

(i) Definition of a derived type t <fad> containing all 2d– and 3d–arrays of variables that
will be integrated into the linked list later in a file mo <task> memory.f90. The variables
must all have the pointer attribute:

TYPE t_ <fad >

{REAL ,INTEGER ,LOGICAL}, POINTER :: <var1 >(: ,:[,:[,:[,:]]])

...

{REAL ,INTEGER ,LOGICAL}, POINTER :: <varn >(: ,:[,:[,:[,:]]])

END TYPE t_ <fad >

(ii) Declare a 1d–array the elements of which are of type t <fad> in order to host the data for
each model domain. Furthermore, we need a 1d–array of type t var list for our linked
list. Both variables have to be allocatable since the number of domains is not known at
compile time:

USE mo_linked_list , ONLY: t_var_list

...

TYPE(t_ <fad >),ALLOCATABLE ,TARGET :: <fad >(:)

TYPE(t_var_list),ALLOCATABLE :: <fad >_list (:)

(iii) We will use several subprograms to construct the linked list and therefore create a subrou-
tine construct <task> list. We need to know the actual number of domains and later
some other variables which we will get from patch array of type t patch. The subroutine
will be:

64 CHAPTER 2. THE CODE OF ICON

USE mo_model_domain , ONLY: t_patch

USE mo_impl_constants , ONLY: SUCCESS

USE mo_exception , ONLY: finish

...

SUBROUTINE construct_ <task >_list (patch_array)

TYPE(t_patch),INTENT(IN) :: patch_array (:)

INTEGER :: ndomain ,ist

ndomain=SIZE(patch_array)

ALLOCATE(<fad >(ndomain), STAT=ist)

IF (ist/= SUCCESS) THEN

CALL finish(’construct_ <task >_list of mo_ <task >_memory.f90’,&

&’allocation of <fad > array failed ’)

END IF

ALLOCATE(<fad >_list(ndomain), STAT=ist)

IF (ist/= SUCCESS) THEN

CALL finish(’construct_ <task >_list of mo_ <task >_memory.f90’,&

&’allocation of <fad >_list array failed ’)

END IF

END SUBROUTINE construct_ <task >_list

(iv) We have to build the linked list and allocate the arrays for each domain separately. Since
we will do the same for each domain, but we have multiple tasks for each domain, the
best is to define a new subroutine new <task> list that will be called in a loop over the
domains. This loop will be in construct <task> list

USE mo_impl_constants , ONLY: MAX_CHAR_LENGTH

...

SUBROUTINE construct_ <task >_list (patch_array)

...

INTEGER :: jg

CHARACTER(len=MAX_CHAR_LENGTH) :: listname

DO jg = 1, ndomain

!the listname should contain the model domain index

WRITE(listname ,’(a,i2.2)’) ’<fad >_D’,jg

CALL new_ <task >_list(jg , patch_array(jg), &

&TRIM(listname), &

&<fad >_list(jg), <fad >(jg))

END DO

END SUBROUTINE construct_ <task >_list

(v) The new subroutine new <task> list for each model domain must first create a new
linked list and then add elements to this list. When the elements are added to this list,
we can get pointers to the 2d– and 3d– (or up to 5d–arrays) and associate them with our
elements in the datastructure <fad>. The subroutine must fill in all the information about
the elements of the linked list. We will first present such a subroutine and then explain
the datastructures and subprograms in more detail.

USE mo_cf_convention , ONLY: t_cf_var

USE mo_var_list , ONLY: new_var_list , &

& default_var_list_settings

2.3. MODIFYING THE ICON CODE 65

USE mo_grib2 , ONLY: t_grib2_var , grib2_var

USE mo_cdi , ONLY: DATATYPE_FLT32 , DATATYPE_FLT64 , &

& GRID_UNSTRUCTURED , GRID_CELL

USE mo_cdi_constants , ONLY: GRID_UNSTRUCTURED_CELL , &

& ZA_HYBRID

USE mo_io_config , ONLY: lnetcdf_flt64_output

USE mo_parallel_config ,ONLY: nproma

...

SUBROUTINE new_ <task >_list (jg, p_patch , &

&listname , &

&<fad >_list , <fad >)

INTEGER ,INTENT(IN) :: jg

TYPE(t_patch),INTENT(IN) :: p_patch

CHARACTER(len=*),INTENT(IN) :: listname

TYPE(t_var_list),INTENT(INOUT) :: <fad >_list

TYPE(t_ <fad >),INTENT(INOUT) :: <fad >

TYPE(t_cf_var) :: cf_desc

TYPE(t_grib2_var) :: grib2_desc

INTEGER :: shape3d (3)

INTEGER :: datatype_flt

CALL new_var_list(<fad >_list , TRIM(listname), patch_id=jg)

!default settings for each list element

CALL default_var_list_settings(<fad >_list , lrestart =.TRUE.)

!Each variable (list element) has to be added to the list

!We give one example here

!Create datastructures first that have to be passed

IF (lnetcdf_flt64_output) THEN

datatype_flt = DATATYPE_FLT64

ELSE

datatype_flt = DATATYPE_FLT32

ENDIF

cf_desc = t_cf_var(’<var >’,’<units >’,&

&’<description >’,datatype_flt)

grib2_desc = grib2_var(&

&<discipline >,<category >,<parameter >, &

&<ibits >, GRID_UNSTRUCTURED , GRID_CELL)

shape3d = (/nproma ,p_patch%nlev ,p_patch%nblks_c /)

CALL add_var(<fad >_list ,’<varname >’,<fad >%<var >, &

&GRID_UNSTRUCTURED_CELL , ZA_HYBRID , &

&cf_desc , grib2_desc , &

&ldims=shape3d , &

&vert_interp = &

&create_vert_interp_metadata(&

&vert_intp_type=vintp_types("P","Z","I"))&

&)

END SUBROUTINE new_ <task >_list

The subroutine new var list takes as arguments the variable <fad> list of type

66 CHAPTER 2. THE CODE OF ICON

t var list, a name of the list and the index of the patch (domain). With the subrou-
tine default var list settings, it is possible to assign default values to all arguments
that are passed in the subroutine add var. Once a default value is assigned, it cannot
be changed by a second call to default var list settings! You can just override the
value in a call of add var. The output in netcdf format allows either 64 or 32 bits. You
can choose this in the io nml namelist in the variable lnetcdf flt64 output (.TRUE.
or .FALSE.). In order to make this choice effective, we have to pass it to the cf desc

argument of add var. Otherwise, cf desc contains the variable name as it will appear in
the netcdf output file, the units and a longer description of the variable. In the GRIB2
format, the variables are categorized into a “discipline”, a “category” in each discipline and
the “parameter” unique to each variable itself. They are all integer numbers and can be
found in the WMO GRIB2 documentation. It is worth to lookup the respective numbers
when adding new variables in order to avoid conflicts with other variables and spurious
questions of your colleagues. The parameter <ibits> tells ICON the number of bits to be
used for packing the variables in the GRIB2 files. The constants DATATYPE PACK16 and
DATATYPE PACK24 are provided by the module mo cdi for this purpose.

The shape of the variable is just an array giving the length of each dimension of the
respective variable.

The call of the subroutine add var has as first argument the linked list <fad> list of
type t var list, the second argument is the name of the list element, the third argu-
ment a component of the <fad> datastructure. Exactly this allows the fast access later
because this array will be associated with the array of the linked list. The following two
arguments describe the the horizontal grid and the vertical grid. We always use variables
on the “unstructured” icosahedral grid, the vertical coordinate is always ZA HYBRID or
ZA HYBRID HALF for the layer interfaces, and ZA SURFACE for 2d– (surface) fields. The last
argument tells ICON how to vertically interpolate the data if necessary.

(vi) It is good practice to deallocate the memory at the end of the program. This includes the
deallocation of the linked list and the corresponding <fad>:

USE mo_var_list , ONLY: delete_var_list

SUBROUTINE destruct_ <task >_list

INTEGER :: ndomain , jg , ist

ndomain = SIZE(<fad >)

DO jg = 1, ndomain

CALL delete_var_list (<fad >_list(jg))

END DO

DEALLOCATE(<fad >_list ,STAT=ist)

IF (ist/= SUCCESS) THEN

CALL finish(’destruct_ <task >_list of mo_ <task >_memory.f90’, &

&’deallocation of <fad >_list array failed ’)

END IF

DEALLOCATE(<fad >,STAT=ist)

IF (ist/= SUCCESS) THEN

CALL finish(’destruct_ <task >_list of mo_ <task >_memory.f90’, &

&’deallocation of <fad > array failed ’)

END IF

END SUBROUTINE destruct_ <task >_list

(vii) The last step is to introduce the subroutines construct <task> list and
desctruct <task> list into ICON. Clearly, these routines have to be called out-

2.3. MODIFYING THE ICON CODE 67

side the time loop during the initialization and the “clean–up” phase, respectively. If
we are using the “ECHAM physics”, the right place to call construct <task> list

is SRC/atm phy echam/mo echam phy init.f90. The clean–up would then be in
SRC/atm phy echam/mo echam phy cleanup.f90.

68 CHAPTER 2. THE CODE OF ICON

Bibliography

[1] L. Bonaventura, M. Esch, H. Frank, M. Giorgetta, T. Heinze, P. Korn, L. Kornblueh, D. Ma-
jewksi, A. Rhodin, P. Ŕıpodas, B. Ritter, D. Reinert, and U. Schulzweida. ICON program-
ming standard. Report, Deutscher Wetterdienst, Max Planck Institute for Meteorology,
Hamburg, 2012.

[2] D. Leuenberger, M. Koller, O. Fuhrer, and C. Schär. A generalization of the SLEVE vertical
coordinate. Monthly Weather Review, 138:3683–3689, 2010.

[3] B. Zängl, D. Reinert, F. Prill, M. Giorgetta, L. Kornblueh, L. Linardakis, S. Müller, and
S. Rast. ICON user’s guide. Report, Deutscher Wetterdienst, Max Planck Institute for
Meteorology, Karlsruhe Institute of Technology, Hamburg, 2016.

69

70 BIBLIOGRAPHY

Listings

1.1 Archive file of the ICON model . 2

1.2 Generation of run scripts from basic run file and experiment file 12

1.3 Basic SLURM commands to submit jobs . 12

1.4 Example for giving an individual frequency to the radiation call 21

1.5 Example for giving start and end date and an individual frequency to the radiation
call . 22

2.1 Declaration of real variables . 30

2.2 Modules in ICON . 30

2.3 type statement . 31

2.4 type . 31

2.5 components . 31

2.6 Derived type of a vectorfield . 32

2.7 Usage of “netsted” derived types . 32

2.8 Passing derived types into subprograms: calls of subroutines 32

2.9 Passing derived types into subprograms . 33

2.10 Recursive data types . 33

2.11 Variables of type tracer to generate a linked list 33

2.12 Linked list of tracers . 34

2.13 Use statement for the extensions of various operators for DT–variables 36

2.14 Usage of type datetime . 36

2.15 Usage of extended operators for DT–variables . 37

2.16 Testing of the ICON code — exp.atm amip test 38

2.17 The message subroutine to output messages and continue the execution of the
ICON code . 39

2.18 The finish subroutine to print a message and stop the ICON program 40

71

72 LISTINGS

2.19 Namelist module – Declaration of namelist . 40

2.20 Read namelist in restart . 41

2.21 Read namelist in initial run . 41

2.22 Store namelist for restart . 42

2.23 Conversion of non–character variables (single values) into a string 42

2.24 Call of reading namelist in ICON . 43

2.25 Grid information as stored in p patch . 44

2.26 Type for geometric information t grid geometry info 45

2.27 Information about grid cells provided by the type t grid cells 46

2.28 Geographical coordinates of cell centres . 46

2.29 Usage of maximum block length nproma . 46

2.30 Variables describing the state of (ECHAM) physics in ICON 47

2.31 Components of prm field and prm tend all at t if not stated differently 47

2.32 Type t nh state for the description of the state of the nonhydrostatic atmosphere 48

2.33 Type t nh prog that hosts the prognostic variables 49

2.34 Density of the atmosphere as state variable of the nonhydrostatic dynamic core . 49

2.35 Type t nh diag containing diagnostic variables from the dynamics 49

2.36 Specific components of t mpi phy config for a process <prc> 50

2.37 Specific components of t mpi phy tc for a process <prc> 50

2.38 Initialization of mpi phy config . 51

2.39 Check TI– and DT–variables given by namelist mpi phy nml 51

2.40 Conversion of TI–and DT–variables into mtime compatible format for process <prc> 51

2.41 Printing the physics configuration variables . 51

2.42 If clauses to evaluate whether a process has to be called or not 52

2.43 Interface routine for calling a physics process . 52

2.44 Maximum string lengths of DT– and TI–variables 54

2.45 mtime library compatible format of DT– and TI–variables 54

2.46 Conversion of DT– and TI–variables from stings into mtime library compatible
format . 54

2.47 Conversion of mtime library compatible variables into strings 54

2.48 Data type for time interpolation weights . 55

LISTINGS 73

2.49 Calculation of time interpolation weights . 55

2.50 Reading a time–dependent 3d–data field on the ICON grid 56

2.51 Function openInputFile for opening a netcdf file for distributed read 57

2.52 Read a general field and send it to all processors 58

2.53 Function openInputFile for opening a netcdf file for reading on the i/o processor 59

2.54 Type t var list for “stream” information . 59

2.55 Types t list element and t var list element for linked lists 60

2.56 Type t var list element containing information about individual list elements 60

2.57 Array of i− 1st stream element . 62

2.58 Zonal wind as member of prm field . 63

	Getting started with ICON
	Source code of ICON
	Basic Compilation
	Model grid
	Horizontal grid
	Vertical grid

	Performing computer experiments with ICON
	Preparation of a computer experiment with ICON
	Namelists for ICON
	Input data for ICON

	The code of ICON
	Flowchart of ICON
	Survey of FORTRAN techniques
	Modules
	Derived types
	Recursive derived types
	Overloading of subprograms
	Recursive subprograms

	Modifying the ICON code
	Messages and error messages in ICON
	Introduction of your own namelist
	Representation of 2d– and 3d–fields in ICON, geographical coordinates
	Data structure containing physics and dynamics variables
	Introduction of new processes into ECHAM physics
	Usage of date and time variables
	Reading data from netcdf input files
	Defining new ``streams''

	Bibliography
	List of listings

