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Chapter 1

Introduction

The ECHAM6 model is a program for the interactive calculation of the general circulation. This
manual contains a user guide of ECHAM6 (chapter 2) including a description of the compilation
procedure on the supercomputer platform blizzard.dkrz.de at DKRZ Hamburg (section 2.1),
a description of the input namelists (section 2.3), input files (section 2.4), and ouput files
(section 2.5), a description of example run scripts (section 2.6), and postprocessing scripts
(section 2.7). We restrict our description to the supercomputer platform blizzard.dkrz.de at
DKRZ in Hamburg. Performing a simulation on other computer platforms requires the same
input data, but the compiling procedure and the directory structure for output in particular,
will be different.
Chapter 3 contains a short description of the code of ECHAM6 and is intended to be a guide for
people who work with the source code of the atmosphere part of ECHAM6. An introduction to
the ECHAM6–code with explanations will become available in form of a lecture soon (“Using and
programming ECHAM6 — a first introduction”).
This description is valid for version echam–6.3.00.

1
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Chapter 2

User guide

2.1 Compiling ECHAM6

2.1.1 Compiling without parallel I/O

The following commands have to be executed in order to compile the ECHAM6 model on the
supercomputer platform blizzard.dkrz.de at Deutsches Klimarechenzentrum (DKRZ):

• Checkout a model version with command:
svn checkout http://svn.zmaw.de/svn/echam6/tags/echam-<version tag>
of a certain tagged version.

• Load the appropriate compiler version used for ECHAM6, e.g.:
module load IBM/xlf13.1.0.8

• Go into the directory echam-<version tag> and execute the command
./configure

• Start the actual compilation with the command
make

2.1.2 Compiling including parallel I/O

The ECHAM6 model can use parallel I/O facilities when it is compiled on either the supercom-
puter platform blizzard.dkrz.de (passat.dkrz.de) at Deutsches Klimarechenzentrum (DKRZ) or
at thunder of the Max Planck Institute for Meteorology, Hamburg. For the compilation, it is
sufficient to execute the script ./contrib/build echam6 io.sh.

This script includes the special “configure” command for the creation of the main Makefile.
Special CDI and YAXT libraries have to be available on the platform and are included into the
configure command:

./ configure --enable -cdi -pio YAXTROOT=<yaxtdir > CDIROOT=<cdidir >

In order to use the parallel I/O feature, several namelist parameters have to be set that are
described in Table 2.14.

3
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2.2 Running ECHAM6

The executable is called echam6 and is put into echam-<tag number>/bin. The actual com-
mand to call the executable depends on the computer system. On the supercomputer platform
blizzard.dkrz.de at DKRZ, the command would be poe echam6, on Linux platforms you can use
mpirun in order to call a parallel program. The echam6 command itself can take the arguments
-i or --init that both have the same effect. This argument forces an initial run and overrides
any namelist setting in this respect. It is therefore possible to use this command line option to
perform a chain job in which the subsequent calls of echam6 perform restarts except the initial
call for which the -i or --init option has to be used. In such a case, the namelist for the
first and subsequent calls of echam6 can be identical although the first call is an initial run and
the subsequent calls are restarts. See also the description of the lresume namelist–variable in
Tab. 2.17.

2.3 Input namelists

2.3.1 Input namelists in file namelist.echam

In Fortran, you can provide the values of input variables that are organized in namelists,
specifying name and value of each variable. Several namelists are used to specify the input
of ECHAM6. Some of the namelists are for the atmospheric part and have to be written into
the file namelist.echam, others determine input variables of the land surface model JSBACH
and have to be written into namelist.jsbach. The atmospheric part can accept the following
namelists in namelist.echam (alphabetical order):

cfdiagctl: CFMIP2 station diagnostics.

co2ctl: interactive CO2 budget calculation.

columnctl: single column model.

cospctl: controls the COSP satellite simulator

cospofflctl: namelist group for offline COSP calculation. Offline means that data from files
are read and no simulation of the general circulation takes place.

debugsctl: creates a stream for grid point variables that can be written to output easily (for
debugging).

dyctl: parameters for atmosphere dynamics.

ensctl: generate forecast ensembles.

gwsctl: gravity wave parameterisation.

hratesctl: diagnostic of heating rates.

mvstreamctl: variables controlling output of mean values.

ndgctl: variables which are related to the nudging of the model, i.e. to the relaxation method
constraining the meteorological variables divergence, vorticity, temperature and pressure
to externally given values.
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new tracer: new tracers can be introduced by the use of this namelist group.

nmictl: normal mode analysis of waves.

parctl: parameters concerning the parallel configuration of model.

physctl: variables related to the physics calculation like switching on/off radiation, diffusion,
convection, surface exchange, . . .

radctl: variables for controlling the radiation calculation.

runctl: contains variables concerning the start and the end of a simulation.

set stream: set the properties of an existing stream by this namelist

set stream element: set stream element properties of an existing stream element by namelist.

set tracer: this namelist group helps to set tracer properties if they are created by some
(sub)model.

stationctl: high frequency output at the location of various sites including profiles.

submdiagctl: submodel diagnostics.

submodelctl: namelists for registration of submodels in ECHAM6.

tdiagctl: tendency diagnostic.

The syntax for each namelist in namelist.echam is :

Listing 2.1: namelist syntax

& <namelist name >

<varname > = <value >

/

Remark: The mere presence of a certain variable in a certain namelist does not mean that
the action associated with this variable really works properly or works at all.
Variables describing repeated events have a special format (type “special” in the following ta-
bles):
{interval}, {unit}, {adjustment}, {offset}
where {interval} is a positive integer number, {unit} is one of ’steps’, ’seconds’,
’minutes’, ’hours’, ’days’, ’months’, ’years’, {adjustment} is one of ’first’, ’last’,
’exact’, ’off’, and {offset} is an integer number giving the offset with respect to the initial
date of the simulation in seconds. A detailed description of the control of time events can be
found in the lecture “Using and programming ECHAM6 — a first introduction” by S. Rast. The
variable list is given in alphabetical order even if the most important variables are not at the
first place in this case.

2.3.1.1 Namelist cfdiagctl

This namelists contains only one parameter to switch on or off the CFMIP2 diagnostics of
3–dimensional fluxes.
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Table 2.1: Namelist cfdiagctl

Variable type Explanation default
locfdiag logical switches on/off CFMIP2 di-

agnostic output of convec-
tive mass flux and 3-D ra-
diation fluxes

.FALSE.

2.3.1.2 Namelist co2ctl

This namelist controls the behaviour of the CO2 submodel. This submodel is not a simple
submodel like the transport of some gas phase species would be because the CO2 module
interacts with the JSBACH surface and vegetation model. In this namelist, the behaviour of
the CO2 submodel in the atmosphere simulated by ECHAM6 and the interaction with the ocean
and soil simulated by JSBACH can be controlled.

Table 2.2: Namelist co2ctl

Variable type Explanation default
lco2 flxcor logical switches on/off flux correc-

tion for exact mass balance
.TRUE.

lco2 mixpbl logical switches on/off CO2 mixing
in planetary boundary layer

.TRUE.

lco2 2perc logical switches on/off limitation of
relative CO2 tendency to
2%

.FALSE.

lco2 emis logical switches on/off reading pre-
scribed CO2 emissions from
a file

.FALSE.

lco2 clim logical switches on/off treating the
CO2 concentration as a
climatological quantity not
being transported

.FALSE.

lco2 scenario logical switches on/off reading CO2

concentrations from a cer-
tain greenhouse gas scenario

.FALSE. but

.TRUE. if
ighg=1 and
lco2=.FALSE.

2.3.1.3 Namelist columnctl

This namelist controls the behaviour of the single column model. A more detailed description
of the single column model can be found in section 2.8.1. Here, we only present the namelist.

Table 2.3: Namelist columnctl

variable type explanation default

table continued on next page
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Table 2.3: columnctl — continued

forcingfile(32) character name of the forcing file —
mld real depth of mixed layer in me-

tres
10

ml input logical ml input=.true.: initial
temperature of mixed layer
ocean is set to the value
of the surface tempera-
ture of the forcing file.
ml input=.false.: the sea
surface temperature is set
to the value given in the
ECHAM6 sst file for the re-
spective column

.false.

nfor div(2) integer option array describing the
treatment of the divergence
of the wind field. The
option array consists of
{iset, icycle} as described in
section 2.8.1.1.

(/0,0/)

nfor lhf(2) integer option array describing the
treatment of the latent heat
flux. The option array con-
sists of {iset, icycle} as de-
scribed in section 2.8.1.1.
This option array is not
working.

(/0,0/)

nfor omega(2) integer option array describing the
treatment of the pressure
velocity. The option array
consists of {iset, icycle} as de-
scribed in section 2.8.1.1.

(/0,0/)

nfor q(3) integer option array describing the
treatment of the specific
humidity in the column.
The option array consists of
{i∆, τ, icycle} as described in
section 2.8.1.1.

(/0,0,0/)

nfor shf(2) integer option array describing the
treatment of the sensible
heat flux. The option ar-
ray consists of {iset, icycle} as
described in section 2.8.1.1.
This option array is not
working.

(/0,0/)

table continued on next page
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Table 2.3: columnctl — continued

nfor t(3) integer option array describing
the treatment of the col-
umn temperature. The
option array consists of
{i∆, τ, icycle} as described in
section 2.8.1.1.

(/0,0,0/)

nfor ts(2) integer option array describing
the treatment of the sur-
face temperature. The
option array consists of
{iset, icycle} as described in
section 2.8.1.1.

(/0,0/)

nfor uv(3) integer option array describing the
treatment of the wind in
~u and ~v direction. The
option array consists of
{i∆, τ, icycle} as described in
section 2.8.1.1. The ~u and
~v winds can not be treated
individually.

(/0,0,0/)

nfor uvgeo(2) integer option array describing
the treatment of the
geostrophic wind. The
option array consists of
{iset, icycle} as described in
section 2.8.1.1.

(/0,0/)

nfor xi(3) integer option array describing the
treatment of the ice water
content. The option array
consists of {i∆, τ, icycle} as
described in section 2.8.1.1.

(/0,0,0/)

nfor xl(3) integer option array describing
the treatment of the liq-
uid water content. The
option array consists of
{i∆, τ, icycle} as described in
section 2.8.1.1.

(/0,0,0/)

2.3.1.4 Namelist cospctl

This namelist group controls the calculations of the COSP satellite simulator.

Table 2.4: Namelist cospctl

Variable type Explanation default

table continued on next page
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Table 2.4: cospctl — continued

extra output logical switches on
(extra output=.true.)
or off
(extra output=.false.)
additional output

.false.

Lisccp sim logical switches on
(Lisccp sim=.true.) or
off (Lisccp sim=.false.)
the ISCCP simulator

.true.

Llidar sim logical switches on
(Llidar sim=.true.) or
off (Llidar sim=.false.)
the COSP LIDAR simula-
tor

.true.

Llidar cfad logical switches on
(Llidar cfad=.true.) or
off (Llidar cfad=.false.)
the output of COSP CFAD
Lidar Scattering Ratio at
532nm

.false.

locosp logical switches on
(locosp=.true.) or
off (locosp=.false.) all
COSP satellite simulators

.false.

l fixed ref logical switches on
(l fixed ref=.true.) or
off (l fixed ref=.false.)
the use of fixed hydrometeor
diameters for tests

.false.

Ncolumns integer number of sub–columns
used for each profile

12

offl2dout integer extra output for offline tests
if offl2dout>0

-1

use netcdf logical switches between
netcdf format output
(use netcdf=.true.)
or GRIB format output
(use netcdf=.false.)

.true.

2.3.1.5 Namelist cospofflctl

This namelist group controls the calculations of the COSP satellite simulator from echam output
without really performing a new simulation of the general circulation.
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Table 2.5: Namelist cospofflctl

Variable type Explanation default
locospoffl logical switches on

(locospoffl=.true.) or
off (locospoffl=.false.)
the offline COSP satellite
simulators

.false.

offl2dout integer extra output for offline sim-
ulators if offl2dout>0

-1

2.3.1.6 Namelist debugsctl

The debug stream is meant to provide a quick and easy tool to the user of ECHAM6 that allows
him to write any 2d– or 3d–gridpoint variable on either layer midpoints or layer interfaces to
an extra stream for debugging. A detailed description can be found in Appendix A.2.

Table 2.6: Namelist debugsctl

Variable type Explanation default
nddf integer number of 3d–fields on full

levels (layer midpoints) cre-
ated in addition to the de-
fault fields

0

nddfh integer number of 3d–fields on half
levels (layer interfaces) cre-
ated in addition to the de-
fault fields

0

nzdf integer number of 2d–fields created
in addition to the default
fields

0

putdebug stream special output frequency of debug
stream

6, ’hours’,

’first’, 0

2.3.1.7 Namelist dynctl

With the help of these namelist parameters, the (large scale) dynamics of the atmosphere can
be controlled.

Table 2.7: Namelist dynctl

Variable type Explanation default
apsurf real fixed global mean of sur-

face pressure in Pa fixing
the mass of the dry atmo-
sphere

98550.0

table continued on next page
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Table 2.7: dynctl — continued

damhih real extra diffusion in the middle
atmosphere

1000.

dampth real damping time in hours
for the horizontal diffusion
of vorticity (linear square
Laplacian), divergence, and
temperature. Depends on
the spectral resolution nn

nn=31: 12.0
nn=63: 7.0
nn=127: 1.5
nn=255: 0.5

diagdyn special frequency for diagnostic
output of quantities de-
scribing the dynamics of
the atmosphere

5, ’days’,

’off’, 0

diagvert special frequency for special (all
layers) diagnostic output
of quantities describing the
dynamics of the atmosphere

5, ’days’,

’off’, 0

enspodi real factor by which upper
sponge layer coefficient is
increased from one layer to
the adjacent layer above

1.0

enstdif real factor by which strato-
spheric horizontal diffusion
is increased from one layer
to the adjacent layer above

1.0

eps real coefficient in the Robert–
Asselin time filter

0.1

hdamp real damping factor for strong
stratospheric damping

1.0

ldiahdf logical switches on/off statistical
analysis of horizontal diffu-
sion

.FALSE.

lumax logical switches on/off the printing
of information on maximum
wind speeds

.FALSE.

lzondia logical purpose unknown .FALSE.

nlvspd1 integer model layer index of upper-
most layer of upper sponge

1

nlvspd2 integer model layer index of lowest
layer of upper sponge

1

nlvstd1 integer model layer index of upper-
most layer at which strato-
spheric horizontal diffusion
is enhanced

1

table continued on next page
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Table 2.7: dynctl — continued

nlvstd2 integer model layer index of low-
est layer at which strato-
spheric horizontal diffusion
is enhanced

1

ntrn(1:nlev) integer layer and resolution de-
pendent critical wave num-
bers for strong stratospheric
damping

see setdyn.f90

spdrag real coefficient for upper sponge
layer in 1/s

0.0, if
lmidatm=.TRUE.:
0.926 × 10−4

(see Tab. 2.17
vcheck real threshold value for check of

high windspeed in m/s
200.0

if
lmidatm=.TRUE.

(see Tab. 2.17:
235.0

vcrit real critical velocity above which
horizontal diffusion is en-
hanced in m/s. Depends on
the spectral resolution nn

nn=106: 68.0
all other nn:
85.0

2.3.1.8 Namelist ensctl

This namelist controls simulations for ensemble forecasts.

Table 2.8: Namelist ensctl

Variable type Explanation default
ensemble member integer index of ensemble mem-

ber between 1 and
ensemble size

-1

ensemble size integer number of ensemble mem-
bers

-1

forecast type integer type of forecast, one
of HR CONTROL=0,
LR CONTROL=1,
NEGATIV PERTURBED=2,
POSITIV PERTURBED=3,
MULTI MODEL=4

-1

2.3.1.9 Namelist gwsctl

This namelist controls the settings for the gravity wave drag parameterization.
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Table 2.9: Namelist gwsctl

Variable type Explanation default
emiss lev integer model layer index counted

from the surface at which
gravity waves are emit-
ted. This number depends
on the vertical resolution
and corresponds to a model
layer that is at roughly
600 hPa in the standard at-
mosphere.

nlev=199: 26
all other nlev:
10

front thres real minimum value of the fron-
togenesis function for which
gravity waves are emitted
from fronts in (K/m)2/h

0.12

iheatcal integer controls upper atmosphere
processes associated with
gravity waves:
iheatcal=1: calculate
heating rates and diffusion
coefficient in addition to
momentum flux deposition
iheatcal=2: momentum
flux deposition only

1

kstar real typical gravity wave hori-
zontal wave number

5× 10−5

lat rmscon hi real latitude above which extra-
tropical gravity wave source
is used. Is only relevant if
lrmscon lat=.TRUE.

10.0

table continued on next page



14 CHAPTER 2. USER GUIDE

Table 2.9: gwsctl — continued

lat rmscon lo real latitude below which trop-
ical gravity wave source
is used. Is only relevant
if lrmscon lat=.TRUE..
There is a linear in-
terpolation between
lat rmscon lo and
lat rmscon hi degrees
N and S, respectively,
between the values given
by rmscon lo (associated
with the tropical gravity
wave parameterization) and
rmscon hi associated with
the extratropical gravity
wave parameterization

5.0

lextro logical switches on/off the Doppler
spreading extrowave param-
eterization by Hines

.TRUE.

lfront logical switches on/off gravity
waves emerging from fronts
and the background. Pa-
rameterization by Charron
and Manzini

.FALSE.

lozpr logical switches on/off the back-
ground enhancement of
gravity waves associated
with precipitation by
Manzini et al.. Does not
work with ECHAM6.

.FALSE.

lrmscon lat logical switches on/off latitude de-
pendent rmscon as defined
in setgws. Must not be
.TRUE. if lfront=.TRUE.

or lozpr=.TRUE.

.FALSE.

m min real minimum bound in vertical
wave number

0.0

pcons real factor for background en-
hancement associated with
precipitation

4.75

pcrit real critical precipitation value
above which root mean
square gravity wave wind
enhancement is applied in
mm/d

5.0

table continued on next page
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Table 2.9: gwsctl — continued

rms front real root mean square frontal
gravity wave horizontal
wave number in 1/m

2.0

rmscon real root mean square gravity
wave wind at lowest layer in
m/s

1.0

rmscon hi real root mean square grav-
ity wave wind at lowest
layer in m/s for extra-
tropical gravity wave
source. Is only relevant if
lrmscon lat=.TRUE.

1.0

rmscon lo real root mean square grav-
ity wave wind at low-
est layer in m/s for
tropical gravity wave
source. Is only relevant
if lrmscon lat=.TRUE..
Depends on the spectral
resolution nn

nn=31: 1.0
nn=63: 1.2
nn=127: 1.05

but 1.1 if
lcouple=.TRUE.

(see Tab. 2.17)
any other nn:
1.1

2.3.1.10 Namelist hratesctl

This namelist is obsolete since its functionality is included in tdiagctl (see section 2.3.1.25).

2.3.1.11 Namelist mvstreamctl

Using this namelist, the online calculation of time averages of non–accumulated grid point and
spectral variables of any ouput stream is possible. If variables are averaged in the original
stream, they may be referenced in the mean value stream For each stream, you can ask for
one additional stream containing the mean values of a subset of variables of this stream. The
namelist mvstreamctl controls which output streams will be doubled. The ouput of mean
values of trace species concentrations are written to the ouput stream tracerm. In this new
implementation, you are more flexible in terms of names of the outputfiles. Furthermore, all
variables are now collected in the mvstreamctl namelist and you do not need to specify any
further variables in the mvctl namelist. However, for backwards compatibility reasons, the
old method using the namelist mvctl described in section 2.3.15.1 still works. A thorough
documentation describing the numerical method and some scientific aspects of the mean value
calculation over time is presented in Appendix A.8.

Table 2.10: Namelist mvstreamctl

Variable Type Explanation Default

table continued on next page
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Table 2.10: mvstreamctl — continued

filetag character(len=7) The averaged variables of each
stream listed in source will be
written to the same outputfile
with ending tag filetag. If
filetag is not present, the names
of the streams are used as filetags
and possibly more than one file
will be created.

target

interval special time averaging interval The default depends
on the setting of
default output

in runctl: For
default output=

.false.:
interval=putdata;
for default output=

.true.: interval=

1,’months’,’first’,0

meannam(500) character(len=64) variable names of stream elements
of which time average is desired.
If source contains more streams
than one, the program stops if
the variables are not contained
in every of these streams. In
that case, specify mvstreamctl for
each stream separately. Variables
that are not either spectral or
2d or 3d grid point variables are
skipped. If meannam is not spec-
ified or equal to ? or ’’, all vari-
ables of the respective stream(s)
are averaged.

’’

source(50) character(len=16) A mean value stream will be
created for each stream listed
in source. Per default, the
names of these replicated streams
are the original names with ap-
pended ’m’. Furthermore, per
default corresponding outputfiles
with these tags in their names will
be created. The default can be
changed by the use of the target

and filetag namelist variables.

’’

sqrmeannam(500) character(len=64) variable names of stream elements
of which time average of their
square is desired. Variables that
are averaged over the output inter-
val in the original stream and may
only be referenced are excluded. If
sqrmeannam=’?’ the mean of the
square is calculated of all variables
in the stream. Does work with
several streams in source

’’

table continued on next page
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Table 2.10: mvstreamctl — continued

target character(len=16) If source contains a single stream
only, you can give a name to
the corresponding mean value
stream by setting target to a
name of your choice. You can
also define a common ending for
all streams in source by set-
ting target=∗<ending>. In that
case, the replicate of each original
stream will have the name <name

of original stream><ending>.

∗m

variables for backward compatibility
m stream name(1:50) character(len=256) List of names of streams for the el-

ements of which mean values shall
be calculated. Note that a max-
imum of 50 output streams is al-
lowed (including the mean value
streams). This variable can still
be used together with the mvctl

namelist but is included only for
backward compatibility. Note
that you cannot set both variables
source and m stream name at the
same time.

’’

Remarks:

target You may use the renaming of the mean value stream if you want to calculate monthly
and daily means of some variables of the same source stream in one simulation. If you do
not rename at least one of these streams, there will be a naming conflict since the default
would be to name both mean value streams after the source stream with an appended
’m’.

Note: you can specify the mvstreamctl namelist several times for different (sets of)
streams in the same namelist.echam input file.

interval Because of the time integration scheme used in ECHAM6, there is a particular be-
haviour in calculating the mean values. Let’s assume that you gave interval =

2,’hours’,’first’,0 and that you have a 40 minutes time step. This means that you
have instantaneous values at 00:00h, 00:40h, 01:20h, 02:00h, 02:40h and so forth. The
above setting of interval now causes a mean value over the values at 00:00h, 00:40h,
01:20h for the tracer stream, over the values at 00:40h, 01:20h, 02:00h for all other streams.
When you specify interval = 2,’hours’,’last’,0, the mean values are taken over val-
ues at 00:40h, 01:20h, 02:00h for the tracer stream and at 01:20h, 02:00h, 02:40h for all
other streams. This is due to the organization of the time integration in ECHAM6. In
general, this is not very important for calculating mean values over a month or so.

You should also be careful in changing your mean value calculation interval in combination
with reruns. Assume that you interrupt your model writing rerun files every month but
that your mean value interval is 2 months. Then, between two output intervals of your
mean values, the rerun file for the mean value streams contains the accumulated values of
one month, this means the sum over the instantaneous values multiplied by the time step
length. If you now decide to change to daily meanvalues for example, the large already
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over one month accumulated value of each variable is taken, further instantaneous values
accumulated until the end of a day and then this value is devided by the number of
seconds of the new mean value calculation interval of one day. This means that you will
end up with a erroneous much too high resulting “mean value”.

Restrictions:

1. In ECHAM6, the current maximum number of streams is 50. Each stream for which you
require a mean value calculation is doubled, so that you have two streams for each one
in the above source list: the original one and the mean value stream. Furthermore, only
30 different (repeated) events are allowed in ECHAM6.

2. Variables all have to be on a Gaussian grid or in spectral space, either two dimensional
or three dimensional. If the variables have the laccu flag set to .true. they are only
referenced if the output interval of the respective mean value stream and the stream of
origin are identical. Otherwise they will be automatically skipped from the list. For
variables that have laccu=.true. in their original stream, no means of the squares can
be calculated.

3. The variable names, full names, and units have to meet length restrictions that are some-
what more restrictive than the normal ECHAM6 restrictions. This is a consequence of the
fact that new names and units are given to the averaged variables. The new names are
chosen as follows

name: The name of the mean value of a variable is the same as the name of the original
(instantaeous) variable. For the mean of the square s is added at the end of the
variable name. Consequently, if the mean of the square is desired, the variable name
has to be 2 characters shorter than the allowed maximum specified in ECHAM6.

full name: Same as for name (relevant for tracer stream only).

unit: Units of mean values are unchanged of course, but in the case of mean values of the
square unitchar is replaced by (unitchar)**2 so that units have to be 5 characters
shorter than the maximum allowed by ECHAM6 if mean values of the square are
required.

4. If target is not set, the length of source must allow for an additional ’m’.

5. If filetag is not set, the length of target must not exceed the maximum length of
filetag(len=7).

Backwards compatibility:
Before ECHAM6 version 1.03, the namelist group MVSTREAMCTL only defined the source streams,
using m stream name instead of source. Other settings, namely putmean (same as interval),
meannam, and stddev (replaced by sqrmeannam) were to be put into a namelist group MVCTL

stored in a separate namelist file named streamname.nml. For compatibility reasons, these are
still recognised, so old setups will continue to work.
Note though, that if you additionally use the new variables interval or meannam of
MVSTREAMCTL, a warning will appear, and the MVSTREAMCTL settings will override any settings
from streamname.nml to avoid inconsistencies.
New features and migration hints:
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• resulting stream may be renamed by setting target

• file name suffix may be set using filetag; an underscore ( ) is prepended automatically

• to request all variables of a stream, simply omit the meannam element; setting it to an
empty string (”) or ’*’ has the same effect

• for MVSTREAMCTL, stddev has been replaced by sqrmeannam. It takes variable names
instead of numeric flags, to allow for a more direct and – if only a few square means are
needed – a more concise definition of those variables. stddev = -1 is now sqrmeannam

=’*’

The relation between old and new variables in the namelist group mvstreamctl and mvctl is
summarized below.
mvstreamctl (new) mvstreamctl (old) mvctl
source m stream name + ’.nml’ as file names
target m stream name(i) + ’m’
interval putmean
filetag ’ ’ + m stream name(i) + ’m’
meannam meannam
meannam not set, = ”, or = ’*’ meannam = ’all’
sqrmeannam stddev
sqrmeannam = ’var1’, ’var4’, . . . stddev = 1, 0, 0, 1, . . .
sqrmeannam = ’*’ stddev = -1

2.3.1.12 Namelist ndgctl

This namelist controls all variables that are relevant for nudging, i.e. relevant for a simulation
mode in which the spectral 3d–temperature, vorticity, divergence, surface pressure, and surface
temperature can be constrained to external fields obtained e.g. from the assimilation of obser-
vations. It has to be underlined that constraining the surface temperature may lead to wrong
sea ice coverage since the presence of sea ice is diagnosed from the surface temperature directly
without taking into account any hysteresis effects (see Appendix A.11).

Table 2.11: Namelist ndgctl

Variable type Explanation default
dt nudg start(1:6)integer defines the beginning of the nudging

in the experiment. Is of the form
yy,mo,dy,hr,mi,se (year, month, day,
hour, minute, second)

0,0,0,0,0,0

dt nudg stop(1:6) integer defines the date at which nudging
stops in a simulation. Is of the form
yy,mo,dy,hr,mi,se (year, month, day,
hour, minute, second)

0,0,0,0,0,0

table continued on next page
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Table 2.11: ndgctl — continued

inudgformat integer format of nudging input files
inudgformat = 0: old CRAY format
input files
inudgformat = 2: netcdf format input
file

0

ldamplin logical linear damping (ldamplin = .true.)
or damping with a parabolic function
(ldamplin = .false.) of the nudging
efficiency between two synoptic times
at which nudging data sets are given

.true.

lnudgdbx logical .true. for additional diagnostic out-
put about nudging, .false. otherwise

.false.

lnudgcli logical lnudgcli = .true.: ECHAM6 ignores the
information about the year in the nudg-
ing data file and reads nudging data in
a cyclic way. Consequently, for each
model year, the same nudging data are
read.
lnudgcli = .false.: The informa-
tion about the year is included in the
nudging procedure, the data to which
the model is constrained depend on the
year.

.false.

lnudgfrd logical lnudgfrd = .true.: normal mode fil-
tering is done at reading the data
lnudgfrd = .false.: normal mode fil-
tering is done elsewhere. Works only
together with lnmi=.true.

.false.

lnudgimp logical lnudgimp = .true.: implicit nudging
lnudgimp = .false.: explicit nudging

.true.

table continued on next page
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Table 2.11: ndgctl — continued

lnudgini logical lnudgini = .false.: ECHAM6 starts or
restarts a simulation for a certain ex-
periment from the date given in the
namelist by dt start or the restart
date in the restart file
lnudgini = .true.: If lresume =
.false., the model starts the simu-
lation at the date of the first nudg-
ing data set being in the nudging
files the names of which correspond
to dt nudge start. There must be
nudging files having a file name cor-
responding to dt nudge start. If
lresume=.true., the model starts its
run at the first date being in the nudg-
ing data files the file names of which
correspond to the next date (next
time step) of the rerun date.

.false.

lnudgpat logical lndgpat = .true.: pattern nudging.
Does not work properly, to be removed
lndgpat = .false: otherwise

.false.

lnudgwobs logical .true. for storing additional nudging
reference fields, .false. otherwise

.false.

lsite logical switches on/off the Systematic Initial
Tendency Error diagnostic

.false.

ltintlin logical ltintlin = .true.: linear time inter-
polation
ltintlin = .false. for cubic spline
time interpolation between two synop-
tic times at which nudging data sets are
given

.true.

ndg file div(256) character file name template for the file contain-
ing the nudging data for the divergence

—

ndg file nc(256) character file name template for netcdf format file
containing all nudging data (tempera-
ture, logarithm of surface pressure, di-
vergence and vorticity)

—

ndg file sst(256) character file name template for file containing
the sea surface temperature

—

ndg file stp(256) character file name template for the file contain-
ing the nudging data for the tempera-
ture and the logarithm of the surface
pressure

—

ndg file vor(256) character file name template for the file contain-
ing the nudging data for the vorticity

—

table continued on next page
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Table 2.11: ndgctl — continued

ndg freez real temperature at which sea water is as-
sumed to freeze in Kelvin

271.65

nsstinc integer treatment of the sea surface tempera-
ture (sst): read new sst data set each
nsstinc hours. A value of 0 means
that sst is not used and prevents the
model to produce too low sea ice cov-
erage when nudging since sea ice would
be detected only if temperatures drop
below ndg freez

0

nsstoff integer read the first sst data at hour nsstoff
after the beginning of the nudging

12

nudgd(1:80) real the relaxation time for each model layer
for the nudging of the spectral diver-
gence is given by 1/(nudgd × 10−5)s.
Note the maximum of 80 layers!

0.5787(1:80)/s
corresponding to
48 hours

nudgdamp real the nudging between two synoptic
times will be reduced to nudgdamp.
Consequently, nudgdamp=1.0 means
that nudging will be effective at 100%
at every time step, nudgdamp=0.0
means that the nudging will be
switched off somewhere between two
synoptic times at which nudging data
are available

1.0

nudglmax integer highest index of the model layer at
which nudging is performed. Note the
maximum of 80 layers!

80

nudglmin integer lowest index of the model layer at which
nudging is performed

1

nudgp real the relaxation time for the nudging of
the logarithm of the surface pressure is
given by 1/(nudgp× 10−5) s

1.1574/s corre-
spondig to 24
hours

nudgdsize real fraction of the synoptic time interval af-
ter which only the fraction nudgdamp

is applied in the nudging procedure.
If nudgdsize < 0.5, the minimum is
reached after a fraction of nudgdsize

of the synoptic time interval. This
minimum nudging level is then main-
tained until the model time reaches the
next synoptic time step minus the frac-
tion nudgdsize of the synoptic time in-
terval. Then, the nudging strength is
starting to increase again

0.5

table continued on next page
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Table 2.11: ndgctl — continued

nudgsmax integer highest nudged wavenumber. Note
the restriction to model resolution not
higher than T106!

106

nudgsmin integer Index of lowest nudged wavenumber
minus one. This means, that with
nudgsmin = 0, the spectral coefficient
0 (global average) is not nudged

0

nudgt(1:80) real the relaxation time for each model layer
for the nudging of the spectral temper-
ature is given by 1/(nudgt × 10−5)s.
Note the maximum of 80 layers!

1.1574(1:80)/s
corresponding to
24 hours

nudgtrun integer mode of selection of spectral
coefficients for nudging (see
mo nudging init.f90). The spec-
tral coefficients of any quantity in
spectral space are characterized by
two indices (n,m) associated with
zeros of the spherical harmonics Y m

n in
longitudinal direction (index m) and
latitudinal direction (index n). Let
L be the spectral model resolution
characterized by the maximum n
and L̃ the maximum spectral reso-
lution to which nudging has to be
applied (L̃ can be set by the namelist
parameter nudgsmax). If one sets
nudgtrun = NDG WINDOW ALL = 0, all
spectral coefficients to the maximum
possible m = L are used even if L̃ < L.
For nudgtrun = NDG WINDOW CUT = 1,
m ≤ n ≤ L̃ is chosen, even if L̃ < L.
If nudgtrun = NDG WINDOW CUT0 = 2,
all spectral coefficients are nudged as
with nudgtrun = 1 but for m = 0 ALL
coefficients up to n = L are used.

0

nudgv(1:80) real the relaxation time for each model layer
for the nudging of the spectral vorticity
is given by 1/(nudgv×10−5)s. Note the
maximum of 80 layers!

4.6296(1:80)/s
corresponding to 6
hours

2.3.1.13 Namelist new tracer

This namelist allows to declare new transported tracers in ECHAM6 without the direct use of the
“tracer interface”. However, in most cases, tracers belong to submodels and will be declared by
them. Often the processes that modify the (mass) mixing ratios of tracers other than transport
by advection, diffusion, convection and a constant decay (radioactive decay) in the atmosphere
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are very complex and need to be programmed in special subroutines. If transport and some
kind of radioactive decay are the only processes that are relevant for changes of the (mass)
mixing ratio of a tracer, this namelist is sufficient. Any quantity proportional to the mass
mixing ratio can be transported. This namelist can be specified several times in the namelist
file namelist.echam for the definition of more tracers than one.

Table 2.12: Namelist new tracer

Variable type Explanation default
bits integer number of bits used in GRIB encoding 16
code integer GRIB code number of tracer in GRIB

format output file
0

nconv integer transport by convection switched
on (nvdiff=ON=1) or switched off
(nvdiff=OFF=0)

ON

name(24) character name of tracer —
ninit integer initialization flag, for a detailed ex-

planation, see the lecture “Work-
ing with ECHAM6 — a first introduc-
tion”. RESTART + CONSTANT = 1 + 2

= 3 means that the tracer (mass) mix-
ing ratio will be read from a restart
file if there is any or set to a constant
throughout the atmosphere

RESTART+CONSTANT

nint integer time integration switched on
(nint=ON=1) or switched off
(nint=OFF=0)

ON

nrerun integer restart flag. ON=1 means that the tracer
(mass) mixing ratio is written to the
restart file, OFF=0 that it is not written
to the restart file

ON

ntran integer transport flag.
ntran=no advection=0: ad-
vective transport switched off,
ntran=semi lagrangian=1: semi–
Lagrangian transport scheme (based
on a version of Olson & Rosinski),
ntran=tpcore=3: multi–dimensional
flux form semi-Lagrangian (FFSL)
scheme (Lin and Rood 1996, Monthly
Weather Review) with many unpub-
lished modifications

tpcore

nvdiff integer transport by vertical diffusion switched
on (nvdiff=ON=1) or switched off
(nvdiff=OFF=0)

ON

table continued on next page
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Table 2.12: new tracer — continued

nwrite integer ON=1: tracer (mass) mixing ratio is
written to output file ∗ tracer; OFF=0:
no output

ON

table integer GRIB code table number in GRIB for-
mat output file

131

tdecay real decay time in seconds (exponential de-
cay)

0.e0

units(24) character units of tracer —
vini real Performing an initial run, the tracer

(mass) mixing ratio will be set to this
value at the beginning of the time inte-
gration

0.e0

2.3.1.14 Namelist nmictl

This is the namelist to control the normal mode analysis.

Table 2.13: Namelist nmictl

Variable type Explanation default
dt nmi start(1:6) integer start date of the NMI procedure. Is

of the form yy,mo,dy,hr,mi,se (year,
month, day, hour, minute, second)

0,0,0,0,0,0

lnmi cloud logical run initialization including clouds .TRUE.

ntdia integer number of time steps of accumulation
interval for diabatic tendencies

8

ntiter integer number of time steps in an iteration in-
terval

2

ntpre integer number of time steps of pre–integration
interval

2

pcut real cut off period in hours (used for nudg-
ing)

12.0

pcutd real cut off period in hours (used for initial-
ization)

6.0

2.3.1.15 Namelist parctl

This namelist controls the parallelization of the ECHAM6 program.

Table 2.14: Namelist parctl

Variable type Explanation default

table continued on next page
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Table 2.14: parctl — continued

db host(132) character hostname to display time per-
formance profiles of a model
run on a special server:
http://jobs-mpi.zmaw.de/index.php

The value of db host is machine de-
pendent as follows: blizzard.dkrz.de:
’plogin1’

ZMAW computers:
’jobs-mpi.zmaw.de’

In order to use this feature, set
ltimer = .true. in the runctl

namelist group (see Tab. 2.17)

’’

iomode integer I/O mode for parallel output. On bliz-
zard.dkrz.de iomode = 2 should be
used, on thunder the faster iomode = 1
is also possible

0

lyaxt transpositionlogical switch on/off the use of YAXT library
for transpositions. This is currently un-
supported.

.false.

network logger(132)character network logger for TCP/IP based de-
bugging

’’

nproca integer number of processors for set A division
of earth

1

nprocb integer number of processors for set B division
of earth

1

nprocio integer number of processors used for par-
allel I/O. For serial I/O, choose
nprocio = 0.
On blizzard.dkrz.de nprocio = 32, on
thunder nprocio = 16 is recommended

0

2.3.1.16 Namelist physctl

This namelist controls the physics calculations in ECHAM6. These are mainly calculations in the
grid point space with parametrized equations for convection, diffusion, gravity waves, and the
exchange of energy and mass at the surface of the earth.

Table 2.15: Namelist physctl

Variable type Explanation default
iconv integer switch for convection scheme:

iconv = 1: Nordeng
iconv = 2: Tiedtke
iconv = 3: Hybrid

1

table continued on next page
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Table 2.15: physctl — continued

icover integer switch for cloud cover scheme:
icover = 1: diagnostic (Sundqvist)
icover = 2: prognostic (Tompkins)

1

lcdnc progn logical switches on/off prognostic cloud
droplet number concentration

.false.

lcond logical switches on/off large scale condensa-
tion scheme

.true.

lconv logical switches on/off convection .true.

lconvmassfix logical switches on/off aerosol mass fixer in
convection (obsolete?)

.true.

lgwdrag logical switches on/off gravity wave drag
scheme of orographic gravity waves

.true.

lice logical switches on/off sea–ice temperature
calculation

.true.

lice supersat logical switches on/off saturation over ice for
cirrus clouds (former icnc = 2)

.false.

lmfpen logical switches on/off penetrative convection .true.

lphys logical switches on/off the parameterisation of
diabatic processes

.true.

lrad logical switches on/off radiation calculation .true.

lsurf logical switches on/off surface–atmosphere ex-
changes

.true.

lvdiff logical switches on/off vertical diffusion pro-
cesses

.true.

nauto integer autoconversion scheme (not yet imple-
mented)

1

ncd activ integer type of cloud droplet activation scheme
(not yet implemented)

0

2.3.1.17 Namelist radctl

The namelist radctl controls the radiation calculation, in particular the frequency of the calls
of the full radiation scheme, and which greenhouse gas concentrations and aerosol properties
are taken into account. See the scientific documentation of ECHAM6 for futher details. For
some namelist variables, special documentation exists and can be provided by S. Rast (sebas-
tian.rast@zmaw.de): 3d-ozone climatology (Appendix A.6), CO2 submodel (Appendix A.3),
stratospheric aerosols by T. Crowley or HAM (Appendix A.10.2), tropospheric aerosols by
S. Kinne (Appendix A.1), variable solar irradiance (Appendix A.5), volcanic aerosols by
G. Stenchikov (Appendix A.4).

Table 2.16: Namelist radctl

Variable type Explanation default
cecc real eccentricity of the orbit of the earth 0.016715

table continued on next page
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Table 2.16: radctl — continued

cfcvmr(1:2) real CFC volume mixing ratios for CFC11
and CFC12 if icfc=2

252.8× 10−12,
466.2× 10−12

ch4vmr real CH4 volume mixing ratio (mole frac-
tion) for ich4=2,3

1693.6× 10−9

clonp real longitude of perihelion measured from
vernal equinox in degrees

282.7

co2vmr real CO2 volume mixing ratio (mole frac-
tion) for ico2=2

353.9× 10−06

cobld real obliquity of the orbit of the earth in
degrees

23.441

fco2 real if an external co2 scenario (ighg = 1

and ico2 = 4) is used, the CO2 con-
centrations are multiplied by fco2

1.

iaero integer iaero = 0: the aerosol concentrations
are set to zero in the radiation compu-
tation
iaero = 1: prognostic aerosol of a sub-
model (HAM)
iaero = 2: climatological Tanre
aerosols
iaero = 3: aerosol climatology com-
piled by S. Kinne
iaero = 5: aerosol climatology com-
piled by S. Kinne complemented with
the volcanic aerosols of G. Stenchikov
iaero = 6: aerosol climatology com-
piled by S. Kinne complemented with
the volcanic aerosols of G. Stenchikov
plus additional (stratospheric) aerosols
from submodels like HAM. The ad-
ditional aerosol optical properties are
computed from effective radii and the
aerosol optical depth at 550 nm, both
quantities provided by external files
with the help of a lookup table by
S. Kinne (b30w120), see Tab. 2.42
iaero = 7: aerosol climatology com-
piled by S. Kinne complemented by the
volcanic aerosols by T. Crowley that
are computed using the lookup table by
S. Kinne (b20w120), see Tab. 2.42
There is no iaero = 4.

2

table continued on next page
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Table 2.16: radctl — continued

icfc integer icfc = 0: all chloro–fluoro–carbon
(CFC) concentrations are set to zero for
the radiation computation
icfc = 1: transported CFCs by any
submodel (not yet implemented)
icfc = 2: uniform volume mixing ra-
tios as defined in the 2–element vector
cfcvmr(1:2) are used for CFC11 and
CFC12, respectively
icfc = 4: uniform volume mixing ra-
tios for a specific scenario defined by
ighg are used in the radiation compu-
tation

2

ich4 integer ich4 = 0: CH4 concentration is set to
zero for the radiation computation
ich4 = 1: transported CH4 by any sub-
model (not yet implemented)
ich4 = 2: uniform volume mixing ra-
tio ch4vmr of methane used in radiation
computation
ich4 = 3: in the troposphere a volume
mixing ratio ch4vmr with a decay in the
layers above the troposphere is used in
the radiation computation
ich4 = 4: a uniform volume mixing ra-
tio for a certain scenario defined by the
parameter ighg is used in the radiation
computation

3

ico2 integer ico2 = 0: CO2 concentration set to
zero for the radiation computation
ico2 = 1: interactively calculated CO2

volume mixing ratio is used with a start
value of co2vmr
ico2 = 2: uniform volume mixing ratio
co2vmr used in radiation computation
ico2 = 4: uniform volume mixing ratio
for a certain scenario run defined by the
ighg parameter is used

2

ighg integer ighg = 0: no specific scenario is chosen
ighg = 1: a certain scenario of green-
house gas volume mixing ratios is used.
Caution: the variables icfc, ich4,
ico2, in2o have to be set to the values
corresponding to the usage of a scenario
in that case

0

table continued on next page
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Table 2.16: radctl — continued

ih2o integer ih2o = 0: H2O is not taken into ac-
count in the radiation computation, i.e.
specific humidity, cloud water, cloud ice
are all set to zero for the radiation com-
putation
ih2o = 1: use prognostic specific hu-
midity, cloud water and cloud ice in ra-
diation computation

1

in2o integer in2o = 0 : the N2O concentration is
set to zero for the radiation computa-
tion
in2o = 1: transported N2O by any
submodel (not yet implemented)
in2o = 2: a uniform volume mixing ra-
tio of n2ovmr is used for the radiation
computation
in2o = 3: a uniform volume mixing
ratio of n2ovmr is used in the tropo-
sphere with a decay in the layers above
the troposphere for the radiation com-
putation
in2o = 4: a uniform volume mixing
ratio of N2O for a specific scenario run
defined by ighg is used for the radia-
tion computation

3

io3 integer io3 = 0: the O3 concentration is set to
zero for the radiation computation
io3 = 1: transported O3 by any sub-
model (not yet implemented)
io3 = 2: climatological O3 volume
mixing ratios given in spectral space
are used in the radiation computation
as it was done in ECHAM4
io3 = 3: climatological O3 volume
mixing ratios given in gridpoint space
in a NetCDF file are used in the radia-
tion computation
io3 = 4: climatological O3 volume
mixing ratios provided by the IPCC
process in NetCDF files are used for the
radiation calculation

3

io2 integer io2 = 0: the O2 concentration is set to
zero for the radiation computation
io2 = 2: the O2 volume mixing ratio is
set to o2vmr for the radiation compu-
tation.

2

table continued on next page
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Table 2.16: radctl — continued

isolrad integer controls choice of solar constant.
isolrad = 0: standard rrtm solar con-
stant
isolrad = 1: time dependent spec-
trally resolved solar constant read from
file
isolrad = 2: pre–industrial solar con-
stant
isolrad = 3: solar constant for amip
runs (fixed in time)

3
isolrad = 4: con-
stant solar irradia-
tion for radiative–
convective equilib-
rium including a di-
urnal cycle.
isolrad = 5: con-
stant solar irradia-
tion for radiative–
convective equilib-
rium without diur-
nal cycle, so it’s
really constant in
time here.

ldiur logical switches on/off diurnal cycle .true.

lradforcing(2) logical switches on/off the diagnostic of
instantaneous aerosol forcing in the
solar spectral range (lradforcing(1))
and the thermal spectral range
(lradforcing(2)). See Appendix A.7

.false.,.false.

n2ovmr real N2O volume mixing ratio (mole frac-
tion) for in2o=2,3

309.5× 10−9

lw gpts ts integer number of g–points in Monte–Carlo
spectral integration for thermal radia-
tion, see lw spec samp

1

lw spec samp integer sampling of spectral bands in radiation
calculation for thermal radiation
lw spec samp = 1: standard broad
band sampling
lw spec samp = 2: Monte–Carlo spec-
tral integration (MSCI); lw gpts ts

randomly chosen g–points per column
and radiation call
lw spec samp = 3: choose g–points not
completely randomly in order to reduce
errors in the surface radiative fluxes

1

nmonth integer nmonth = 0: execute full annual cycles
nmonth = 1, 2, . . . , 12: perpetual rep-
etition of the month corresponding to
the number to which nmonth is set. The
perpetual month works with a 360–
day orbit only (l orbvsop87=.false.

must be set in runctl).

0

table continued on next page
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Table 2.16: radctl — continued

o2vmr real O2 volume mixing ratio 0.20946

rad perm integer number that influences the perturba-
tion of the random seed from column
to column

0

sw gpts ts integer number of g–points in Monte–Carlo
spectral integration for solar radiation,
see sw spec samp

1

sw spec samp integer sampling of spectral bands in radiation
calculation for thermal radiation
sw spec samp = 1: standard broad
band sampling
sw spec samp = 2: Monte–Carlo spec-
tral integration (MSCI); lw gpts ts

randomly chosen g–points per column
and radiation call
sw spec samp = 3: choose g–points not
completely randomly in order to reduce
errors in the surface radiative fluxes

1

trigrad special time interval for radiation calculation 2,’hours’,’first’,0

yr perp integer year in the Julian calendar for per-
petual year simulations. Works with
l orbvsop87=.true. only.

-99999

2.3.1.18 Namelist runctl

This namelist contains variables which control the start and end of a simulation and general
properties of the output. For some namelist variables, special documentation exists and can be
provided by S. Rast (sebastian.rast@zmaw.de): debug stream (Appendix A.2) and tendency
diagnostic (Appendix A.9).

Table 2.17: Namelist runctl

Variable type Explanation default
default output logical this variable sets the default value of

lpost of any stream. If lpost of a cer-
tain stream is .TRUE., the respective
variables of the stream will be written
to the respective output file. It can be
used to switch off all default output

.TRUE.

table continued on next page
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Table 2.17: runctl — continued

delta time integer time step length in seconds default depends
on model resolu-
tion, e.g.: T63L47:
600 s, T63L95:
450 s, T127L95:
240 s

dt resume(1:6) integer reset restart date to a user defined
value. Is of the form yy,mo,dy,hr,mi,se
(year, month, day, hour, minute, sec-
ond)

0,0,0,0,0,0

dt start(1:6) integer vector of 6 integer numbers defining
the start date of the experiment of the
form yy,mo,dy,hr,mi,se (year, month,
day, hour, minute, second)

0,0,0,0,0,0

dt stop(1:6) integer stop date of experiment. Is of the
form yy,mo,dy,hr,mi,se (year, month,
day, hour, minute, second)

0,0,0,0,0,0

earth angular velocityreal value for solid earth angular velocity in
rad/s

7.29212e-5rad/s

gethd special time interval for getting data from hy-
drological discharge model

1,’days’,’off’,0

getocean special time interval for sending atmospheric
data to an ocean program coupled to
ECHAM5

1,’days’,’off’,0

iadvec integer selection of the advection scheme:
iadvec = 0: no advection of trace
species and water vapour
iadvec = 1: semi Lagrangian trans-
port algorithm
iadvec = 2: spitfire advection scheme
iadvec = 3: flux form semi Lagrangian
transport (Lin and Rood)

3 – flux form semi
Lagrangian trans-
port

l orbvsop87 logical l orbvsop87 = .true.: use orbit
functions from vsop87 (real orbit);
l orbvsop87 = .false.: “climatologi-
cal” pcmdi (AMIP) orbit

.true.

lfractional mask logical switches on/off the usage of a fractional
land–sea mask

.false.

l volc logical switches on/off volcanic aerosols. This
variable is obsolete and has to be re-
moved. Use iaero of the radctl

namelist instead.

.false.

lamip logical switches on/off the use of a timeseries
of sea surface temperatures (AMIP
style simulation)

.false.

table continued on next page
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Table 2.17: runctl — continued

lcollective write logical switch on/off parallel writing of restart
files

.false.

lcouple logical switches on/off coupling with ocean .false.

lcouple co2 logical switches on/off the interactive CO2

budget calculation in a coupled atmo-
sphere/ocean run

.false.

lcouple parallel logical Only if model was compiled with
--prism: switches on/off communica-
tion by OASIS via all or one processor

.false.

ldailysst logical switches on/off daily varying sea sur-
face temperature and sea ice

.false.

ldebug logical switches on/off mass fixer diagnostics .false.

ldebugcpl logical switches on/off debugging of OASIS
coupling (only if model was compiled
using --prism)

.false.

ldebugev logical switches on/off the output of debugging
information about events

.false.

ldebughd logical switches on/off the output of debugging
information about the hydrological dis-
charge model

.false.

ldebugio logical switches on/off the output of debugging
information about input and output

.false.

ldebugmem logical switches on/off the output of debugging
information about memory use

.false.

ldebugs logical switches on/off the debug stream .false.

ldiagamip logical switches on/off AMIP diagnostics .false.

lforcererun logical switches on/off forced re–initialization
of the ECHAM6 run when restart files
were written. Forced re–initialization
makes the model behave like starting
from restart files with lresume=.true.

.true.

lhd logical switches on/off the coupling to the hy-
drologic discharge model (HD model)

.false.

lhd highres logical switches on/off high resolution (0.5◦)
output of hydrological discharge model

.false.

lhd que logical switches on/off additional output from
hydrological discharge model

.false.

lindependent read logical switches on/off reading initial or restart
data by each MPI rank separately

.false.

lmeltpond logical switches on/off the presence of melt-
ponds in albedo calculation

.true.

lmidatm logical switches on/off middle atmosphere
model version

.true.

lmlo locical switches on/off mixed layer ocean .false.

lmlo ice logical switch on/off sea ice calculation for
mixed layer ocean

.true.

table continued on next page
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Table 2.17: runctl — continued

lnmi logical switches on/off normal mode initialisa-
tion

.false.

lnudge logical switches on/off the “nudging” i.e. con-
straining the dynamic variables diver-
gence, vorticity, temperature, and sur-
face pressure towards given external
values by relaxation

.false.

lnwp logical switches on/off Numerical Weather
Prediction mode

.false.

lport logical switches on/off the introduction of a
random perturbation for portability
tests

.false.

lprint m0 logical switches on/off measuring and printing
the cpu time for every time step

.false.

lrce logical switch on/off radiation calculation for
radiative–convective equilibrium (same
zenith angle at all grid points), con-
stant ocean albedo of 0.07, ignore
dynamical planetary boundary layer
height in planetary boundary layer cal-
culation

.false.

lresume logical lresume = .true.: perform a rerun
lresume = .false.: perform an initial
run

.false.

ltctest logical switches on/off a test of time control
without performing a true simulation

.false.

ltdiag logical switches on/off an additional detailed
tendency diagnostic

.false.

ltimer logical switches on/off the output of some
performance related information (run
time)

.false.

ly360 logical switches on/off the use of a 360–day
year

.false.

ndiahdf integer logical unit number for file containing
horizontal diffusion diagnostics.

10

nhd diag integer number of region for which hydrological
discharge model diagnostics is required

0

no cycles integer stop after no cycles of reruns 1

no days integer stop after no days days after dt start -1

no steps integer stop after the integration of no steps

of time steps after dt start

-1

nproma integer vector length of calculations in grid
point space

number of longi-
tudes

nsub integer number of subjobs 0

out datapath(256) character name of path to which output files are
written. Must have a “/” at the end

’ ’

table continued on next page
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Table 2.17: runctl — continued

out expname(19) character prefix of output file names ’ ’

out filetype integer format of meteorological output files
out filetype = 1: GRIB format
out filetype = 2: NetCDF format
out filetype = 6: NetCDF4 format

1

out ztype integer compression type of outputfiles
out ztype = 0: no compression
out ztype = 1: szip only for GRIB
output
out ztype = 2: zip only for NetCDF4
output

0

putdata special time interval at which output data are
written to output files

12,’hours’,’first’,0

puthd special time interval for putting data to the hy-
drological discharge model

1,’days’,’off’,0

putocean special time interval for receiving ocean data in
the atmospheric part if ECHAM6 is cou-
pled to an ocean model

1,’days’,’off’,0

putrerun special time interval for writing rerun files 1,’months’,’last’,0

rerun filetype integer format of rerun files
rerun filetype = 2: NetCDF format
rerun filetype = 4: NetCDF2 for-
mat

2

rmlo depth real depth of mixed layer ocean in metres 50m
subflag(1:9) logical vector of nine switches for switching

on/off the binding of subjob output to
output streams

.false.

trac filetype integer format of tracer output files
trac filetype = 1: GRIB format
trac filetype = 2: NetCDF format

1

trigfiles special time interval at which new output files
are opened

1,’months’,’first’,0

trigjob(1:9) special time interval for the automatic submis-
sion of up to nine subjobs

1,’months’,’off’,0

2.3.1.19 Namelist set stream

This namelist allows to modify the properties of an existing stream. You may overwrite output
properties of an existing stream here. If a namelist variable is not present or set to certain
values, the original values of these descriptor variables remain unchanged. In that case the
default is marked by “original state”. For specifying these properties for several streams, this
namelist group has to be specified for each single stream.
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Table 2.18: Namelist set stream

Variable type Explanation default
filetype integer file format of output file associated with

stream.
out filetype = 1: GRIB format
out filetype = 2: NetCDF format
out filetype = 6: NetCDF4 format

original filetype

init suf(8) character suffix of file with initial data for this
stream

original suffix

interval special output frequency original state (also
if counter=0)

linit integer switch on (linit=1) or off
(linit6=1,-1) writing stream to
initial file (does not work?)

original state

lpost integer switch on (lpost=1) or off
(lpost6=1,-1) output of stream.

original state

lrerun integer switch on (lrerun=1) or off
(lrerun6=1,-1) output of stream
to restart file.

original state

post suf(8) character suffix of output file associated with this
stream

original suffix

rest suf(8) character suffix of restart file associated with this
stream

original suffix

stream(16) character name of the stream the properties of
which shall be changed

—

2.3.1.20 Namelist set stream element

This namelist allows to modify the properties of an existing stream element. You may overwrite
output properties of an existing stream element here. If a namelist variable is not present or
set to certain values, the original values of these descriptor variables remain unchanged. For
specifying these properties for several stream elements, this namelist group has to be specified
for each single stream element.

Table 2.19: Namelist set stream element

Variable type Explanation default
bits integer number of bits used in GRIB encoding original value
code integer GRIB code number of stream element

in GRIB format output file
original value

longname(64) character long name of stream element containing
some explanation

original value

lpost integer switch on (lpost=1) or off
(lpost6=1,-HUGE(lpost)) output
of stream element.

original state

table continued on next page
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Table 2.19: set stream element — continued

lrerun integer switch on (lrerun=1) or off
(lrerun6=1,-HUGE(lrerun)) out-
put of stream element to restart file.
If lrerun=1, the lrerun element of a
variable of type memory info associ-
ated with this stream element will be
set to .true.

original state

name(64) character name of stream element as it was used
in its declaration

—

reset real value to which stream element is set af-
ter output if and only if laccu=.true.
for this stream element

original value

stream(64) character name of stream to which the stream el-
ement belongs

—

table integer GRIB code table number in GRIB for-
mat output file

original value

units(64) character units of the quantity described by
stream element

original value

2.3.1.21 Namelist set tracer

This namelist allows to modify the properties of a tracer that is defined in some submodel or
subroutine of ECHAM6 without the direct use of the “tracer interface”. If a namelist variable
is not present or set to certain values, the original values of these descriptor variables remain
unchanged. In order to set the properties of several tracers, you can specify this namelist several
times in the namelist file namelist.echam.

Table 2.20: Namelist set tracer

Variable type Explanation default
bits integer number of bits used in GRIB encoding original value
code integer GRIB code number of tracer in GRIB

format output file
original value

nconv integer transport by convection switched
on (nvdiff=ON=1) or switched off
(nvdiff=OFF=0)

original value

name(24) character name of tracer as it was used in the
tracer declaration

—

ninit integer initialization flag, for a detailed ex-
planation, see the lecture “Work-
ing with ECHAM6 — a first introduc-
tion”. RESTART + CONSTANT = 1 + 2

= 3 means that the tracer (mass) mix-
ing ratio will be read from a restart
file if there is any or set to a constant
throughout the atmosphere

original value

table continued on next page
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Table 2.20: set tracer — continued

nint integer time integration switched on
(nint=ON=1) or switched off
(nint=OFF=0)

original value

nrerun integer restart flag. ON=1 means that the tracer
(mass) mixing ratio is written to the
restart file, OFF=0 that it is not written
to the restart file

original value

ntran integer transport flag.
ntran=no advection=0: ad-
vective transport switched off,
ntran=semi lagrangian=1: semi–
Lagrangian transport scheme (based
on a version of Olson & Rosinski),
ntran=tpcore=3: multi–dimensional
flux form semi-Lagrangian (FFSL)
scheme (Lin and Rood 1996, Monthly
Weather Review) with many unpub-
lished modifications

original value

nvdiff integer transport by vertical diffusion switched
on (nvdiff=ON=1) or switched off
(nvdiff=OFF=0)

original value

nwrite integer ON=1: tracer (mass) mixing ratio is
written to output file ∗ tracer; OFF=0:
no output

original value

table integer GRIB code table number in GRIB for-
mat output file

original value

tdecay real decay time in seconds (exponential de-
cay)

original value

units(24) character units of tracer original value
vini real Performing an initial run, the tracer

(mass) mixing ratio will be set to this
value at the beginning of the time inte-
gration

original value

2.3.1.22 Namelist stationctl

This namelist switches on/off the high frequency output of ECHAM6 variables at the CFMIP2–
sites including profiles. The collection of sites is that of K. Taylor that were used in the CMIP5
simulations and are listed in the file pointlocations.txt (see Tab. 2.43). A description of the
output can be found in section 2.5.3. A more detailed description of the station diagnostic can
be found in section A.13.

Table 2.21: Namelist stationctl

Variable type Explanation default

table continued on next page
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Table 2.21: stationctl — continued

lostation logical logical that switches on
(lostation=.true. or off
lostation=.false. the
output of certain ECHAM6

variables at a collection of
sites. At these sites, profiles
are also written to the out-
put.

.false.

2.3.1.23 Namelist submdiagctl

This namelist controls diagnostic output of generic submodel variables and streams. In the
“pure” ECHAM6 version, these switches do not have any functionality.

Table 2.22: Namelist submdiagctl

Variable type Explanation default
drydep gastrac(24,1:200) character names of gas phase tracers

to be included in dry depo-
sition stream. Special name
’default’ is possible

drydep gastrac(1)

= ’default’,
drydep gastrac

(2:200) = ’’

drydep keytype integer aggregation level of output
of dry deposition stream
drydep keytype=1: output
by tracer
drydep keytype=2: output
by (chemical) species
drydep keytype=3: output
by (aerosol) mode
drydep keytype=4: user
defined

2

drydep lpost logical switches on/off output of
wet deposition stream

.true.

drydep tinterval special output frequency of wet de-
position stream

putdata

(see runctl

namelist)
drydepnam(32,1:50) character list of tracer names of dry

deposition output stream.
There are the special names
’all’ = ’detail’, and
’default’

drydepnam(1)

= ’default’,
drydepnam(2:50)

= ’’

emi gastrac(24,1:200) character names of gas phase trac-
ers to be included in emis-
sion stream to diagnose
emissions. Special name
’default’ is possible

emi gastrac(1)

= ’default’,
emi gastrac

(2:200) = ’’

table continued on next page
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Table 2.22: submdiagctl — continued

emi keytype integer aggregation level of out-
put of emission diagnostic
stream
emi keytype=1: output by
tracer
emi keytype=2: output by
(chemical) species
emi keytype=3: output by
(aerosol) mode
emi keytype=4: user de-
fined

2

emi lpost logical switches on/off output of
emission diagnostic stream

.true.

emi lpost detail logical switches on/off detailed
(emissions by sector) out-
put of emission diagnostic
stream

.true.

emi tinterval special output frequency of emis-
sion diagnostic stream

putdata

(see runctl

namelist)
eminam(32,1:50) character list of tracer names of

emission diagnostic stream.
There are the special names
’all’ = ’detail’, and
’default’

eminam(1) =

’default’,
eminam(2:50)

= ’’

sedi keytype integer aggregation level of output
of sedimentation stream
sedi keytype=1: output by
tracer
sedi keytype=2: output by
(chemical) species
sedi keytype=3: output by
(aerosol) mode
sedi keytype=4: user de-
fined

2

sedi lpost logical switches on/off output of
sedimentation stream

.true.

sedi tinterval special output frequency of sedi-
mentation stream

putdata

(see runctl

namelist)
sedinam(32,1:50) character list of tracer names of

sedimentation diagnostic
stream. There are the spe-
cial names ′all′ = ′detail′,
and ’default’

sedinam(1)

= ’default’,
sedinam(2:50)

= ’’

table continued on next page



42 CHAPTER 2. USER GUIDE

Table 2.22: submdiagctl — continued

vphysc lpost logical switches on/off output of
vphysc stream

.true.

vphysc tinterval special output frequency of vphysc
stream

putdata

(see runctl

namelist)
vphyscnam(32,1:50) character list of variable names of

vphysc stream. There are
the special names ’all’

and ’default’

vphyscnam(1)

= ’default’,
vphyscnam(2:50)

= ’’

wetdep gastrac(24,1:200) character names of gas phase tracers
to be included in wet depo-
sition stream. Special name
’default’ is possible

wetdep gastrac(1)

= ’default’,
wetdep gastrac

(2:200) = ’’

wetdep keytype integer aggregation level of output
of wet deposition stream
wetdep keytype=1: output
by tracer
wetdep keytype=2: output
by (chemical) species
wetdep keytype=3: output
by (aerosol) mode
wetdep keytype=4: user
defined

2

wetdep lpost logical switches on/off output of
wet deposition stream

.true.

wetdep tinterval special output frequency of wet de-
position stream

putdata

(see runctl

namelist)
wetdepnam(32,1:50) character list of tracer names of wet

deposition output stream.
There are the special names
′all′ = ′detail′, and
’default’

wetdepnam(1)

= ’default’,
wetdepnam(2:50)

= ’’

2.3.1.24 Namelist submodelctl

This namelist contains general submodel switches of “proper submodels” including switches
that control the coupling among submodels.

Table 2.23: Namelist submodelctl

Variable type Explanation default
laircraft logical switches on/off aircraft

emissions
.false.

lburden logical switches on/off burden cal-
culation (column integrals)

.false.

table continued on next page
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Table 2.23: submodelctl — continued

lco2 logical switches on/off CO2 sub-
model (interacting with JS-
BACH)

.false.

lchemheat logical switches on/off chemical
heating

.false.

lchemistry logical switches on/off chemistry .false.

ldrydep logical switches on/off dry deposi-
tion

.false.

lham logical switches on/off HAM
aerosol submodel

.false.

lemissions logical switches on/off emissions .false.

lhammonia logical switches on/off HAMMO-
NIA submodel (middle
and upper atmosphere
submodel)

.false.

lhammoz logical switches on/off HAM
aerosol submodel and
MOZART chemistry sub-
model and the coupling
between the two

.false.

lhmzhet logical switches on/off hammoz
heterogeneous chemistry

.false.

lhmzphoto logical switches on/off hammoz
photolysis

.false.

lhmzoxi logical switches on/off hammoz ox-
idant fields

.false.

linterchem logical switches on/off coupling of
chemistry with radiation

.false.

linteram logical switches on/off interactive
airmass calculation (HAM-
MONIA)

.false.

lintercp logical switches on/off interactive
cp calculation (HAMMO-
NIA)

.false.

llght logical switches on/off interactive
computation of lightning
emissions

.false.

lmethox logical switches on/off methane ox-
idation in stratosphere

.false.

lmegan logical switches on/off biogenic
vegetation emissions

.false.

lmicrophysics logical switches on/off micros-
physics calculations

.false.

lmoz logical switches on/off MOZART
chemistry submodel

.false.

table continued on next page
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Table 2.23: submodelctl — continued

loisccp logical switches on/off isccp simu-
lator. Currently, the isccp
simulator is implemented
outside the submodel inter-
face

.false.

losat logical switches on/off satellite
simulator. Currently, the
locosp switch for the
cosp satellite simulator is
implemented outside the
submodel interface.

.false.

lsalsa logical switches on/off SALSA
aerosol submodel

.false.

lsedimentation logical switches on/off sedimenta-
tion

.false.

ltransdiag logical switches on/off atmospheric
energy transport diagnostic

.false.

lwetdep logical switches on/off drydeposi-
tion

.false.

lxt logical switches on/off generic test
of tracer submodel

.false.

2.3.1.25 Namelist tdiagctl

This namelist determines the output of the tendency diagnostic. The tendencies of Tab. 2.24
can be diagnosed. The following variables are contained in the diagnostic stream tdiag. The
top row describes the variables, the first column gives the routine names (processes) producing
the tendencies saved under the names in the corresponding rows. The units of the variables
and code numbers are given in parenthesis.

Table 2.24: Variables of the diagnostic stream tdiagctl

variable du/dt dv/dt dT/dt dq/dt dxl/dt dxi/dt
(m/s/day) (m/s/day) (K/day) (1/day) (1/day) (1/day)

routine
(process)

vdiff
dudt vdiff dvdt vdiff dtdt vdiff dqdt vdiff dxldt vdiff dxidt vdiff

(code 11) (code 21) (code 1) (code 31) (code 41) (code 51)

radheat
— — dtdt rheat sw (code 62) — — —

— — dtdt rheat lw (code 72) — — —

gwspectrum
dudt hines dvdt hines dtdt hines

— — —
(code 13) (code 23) (code 3)

ssodrag
dudt sso dvdt sso dtdt sso

— — —
(code 14) (code 24) (code 4)

cucall
dudt cucall dvdt cucall dtdt cucall dqdt cucall

— —
(code 15) (code 25) (code 5) (code 35)

cloud — —
dtdt cloud dqdt cloud dxldt cloud dxidt cloud

(code 6) (code 36) (code 46) (code 56)

spectral variables

table continued on next page
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Table 2.24: variables of tdiagctl — continued

variable dξ̂/dt dD̂/dt dT̂ /dt
(1/s/day) (1/s/day) (K/day)

routine
(process)

hdiff
dsvodt hdiff dsddt hdiff dstdt hdiff

(code 87) (code 97) (code 7)

atmospheric variables
Box area surface geopotential ln(ps/p	) ps T (t) T (t−∆t)

m2 m2/s2 spectral Pa spectral K

Additional documentation can be found in Appendix A.9.

Table 2.25: Namelist tdiagctl

Variable type Explanation default
puttdiag special Output frequency of tendency stream 6, ’hours’,

’first’, 0

table continued on next page
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Table 2.25: tdiagctl — continued

tdiagnam(32,1:22)character determines the choice of tendencies
that are written to the output stream
tdiag

keyword explanation
’all’ output all tendencies

of tdiag stream
one of

’vdiff’,
’hdiff’,
’radheat’,
’gwspectrum’,
’ssodrag’,
’cucall’,
’cloud’

output all tenden-
cies associated with

vdiff,
hdiff,
radheat,
gwspectrum,
ssodrag,
cucall,
cloud

one of

’uwind’

’vwind’

’temp’

’qhum’

’xl’

’xi’

of all processes, out-
put the tendencies

du/dt, dξ̂/dt, dD̂/dt
dv/dt, dξ̂/dt, dD̂/dt
dT/dt, dT̂ /dt
dq/dt
dxl

dxi

one of the vari-
able names
of the ten-
dencies listed
in table 2.24,
e.g. dudt hines

output this ten-
dency, e.g. du/dt
due to gwspectrum

tdiagnam(1) =
′all′, tdiagnam(2 :
22) = ′end′

2.3.2 The JSBACH Namelists namelist.jsbach

In our standard setup the JSBACH namelist file namelist.jsbach is generated as a here doc-
ument by the run script. This assures that the namelists are up-to-date and the JSBACH con-
figuration matches the configurations of the other Earth System component models, if running
in a coupled configuration. The JSBACH namelist file includes several independent Fortran
namelists.

jsbach ctl defines the basic settings of a JSBACH simulation. The namelist includes param-
eters to switch on or off JSBACH modules, and controls IO.

albedo ctl defines parameters that are used in the albedo scheme
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bethy ctl controls the photosynthesis (BETHY) module

cbalance ctl controls the carbon modules

cbal parameters ctl defines parameters of the carbon module

climbuf ctl defines parameters for multi-year climate variable calculation

disturbance ctl controls the disturbance modules, i.e. fire and windthrow calculations

dynveg ctl controls the dynamic vegetation

fire jsbach ctl defines parameters for the ’jsbach’ fire scheme

soil ctl defines parameters used in the soil module

windbreak jsbach ctl defines parameters for the ’jsbach’ windthrow scheme

The hydrology module (HD model) is currently not included in JSBACH. It is active only in
runs with ECHAM6. As soil hydrology and river routing is strongly linked to the land surface
it makes sense to document the module within the JSBACH documentation.

hydrology ctl controls the hydrology module

hdalone ctl is a namelist needed for stand-alone HD model simulations

The following namelists are used only in JSBACH stand-alone runs.

jsbalone ctl controls the flow of the JSBACH stand-alone experiment. In a coupled JS-
BACH/ECHAM run these parameters are defined in the ECHAM namelist runctl.

jsbalone parctl corresponds to the ECHAM namelist parctl. It defines parameters for
parallelization.

forcing ctl defines the type and frequency of the atmospheric forcing

jsbgrid ctl includes parameters to specify the model grid and parallelization issues

The CBALANCE offline model again has a special namelist.

cbalone ctl specifies a CBALANCE experiment. It corresponds to runctl of JS-
BACH/ECHAM or jsbalone ctl of JSBACH stand-alone experiments.

The tables in the following subsections list the parameters of the different JSBACH namelists.
Each parameter is listed in alphabetical order and is briefly described. Besides, the Fortran
type and the default values are given.

2.3.3 Namelist albedo ctl

The namelist for the albedo scheme is read in routine config albedo of module
mo land surface. It is used only if the albedo scheme is switched on, i.e. use albedo=.TRUE.

in namelist jsbach ctl (compare table 2.35).
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Table 2.26: Namelist albedo ctl

Parameter Type Description Default
albedo age weight real 0: ECHAM5 scheme for snow albedo;

1: snow age scheme; between 0 and
1: snow albedo linearly weighting from
ECHAM5 and snow age scheme albedo

0.5

use albedocanopy logical .TRUE.: read maps of canopy albedo
(albedo veg nir and albedo veg vis

from jsbach.nc); .FALSE.: use PFT
specific albedo values from lctlib.def

.FALSE.

use albedosoil logical .TRUE.: calculate soil albedo denpend-
ing on soil carbon and litter. Note:
this option should not be used with the
standard jsbach initiel file!

.FALSE.

use albedosoilconst logical .TRUE.: base albedo of the soil (with-
out soil carbon and leaf litter) is set
to a global constant; .FALSE.: base
albedo of the soil is read from js-
bach initial file. Only used with
use albedosoil=.TRUE..

.FALSE.

use litter logical .TRUE.: soil albedo depends
on leaf litter. Only used with
use albedosoil=.TRUE..

.TRUE.

use soc character linear: soil albedo linearly de-
pends on soil carbon; log: log-
arithmic dependence of soil albedo
on soil carbon. Only used with
use albedosoil=.TRUE..

’linear’

2.3.4 Namelist bethy ctl

The namelist bethy ctl controls the BETHY module for photosynthesis. It is used only if
use bethy=.TRUE. in namelist jsbach ctl (compare table 2.35). The namelist is read in
routine config bethy of mo bethy.

Table 2.27: Namelist bethy ctl

Parameter Type Description Default
ncanopy integer number of canopy layers 3

2.3.5 Namelist cbalance ctl

The cbalance module handling the carbon pools is controlled by namelist cbalance ctl. The
namelist is read in routine init cbalance bethy in mo cbal bethy.
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Table 2.28: Namelist cbalance ctl

Parameter Type Description Default
cpools file name character name of the file containing initial data

for the carbon pools. Only used if
read cpools=.TRUE.

’Cpools.nc’

ndepo file name character name of the file containing ni-
trogen deposition data. Only
used if with nitrogen= .TRUE.

in jsbach ctl and read cpools=

.TRUE.

’Ndepo.nc’

npool file name character name of the file containing ini-
tial data for the nitrogen pools.
Only used if with nitrogen = .TRUE.

in jsbach ctl and read npools =

.TRUE.

’Npools.nc’

read cpools logical initialize carbon pools with data from
an external file.

.FALSE.

read ndepo logical read nitrogen deposition data
from an external file. Only used
if with nitrogen= .TRUE. in
jsbach ctl

.FALSE.

read npools logical initialize nitrogen pools with data
from an external file. Only used if
with nitrogen=.TRUE. in jsbach ctl

.FALSE.

read ycpools logical initialize YASSO carbon pools with
data from an external file

.FALSE.

ycpool file name character name of the file containing initial data
for YASSO carbon pools (only used if
read ycpools=.TRUE.)

’YCpools.nc’

2.3.6 Namelist cbal parameters ctl

Several parameters needed for carbon cycle calculations are defined in namelist
cbal parameters ctl. The namelist is read in routine config cbal parameters of module
mo cbal parameters.

Table 2.29: Namelist cbal parameters ctl

Parameter Type Description Default
cn green real carbon-to-nitrogen ratio of the green

pool
35.

cn litter green real carbon-to-nitrogen ratio of falling
leaves and green litter

55.

cn litter wood real carbon-to-nitrogen ratio of woody litter
pools

50.

table continued on next page
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Table 2.29: cbal parameters ctl — continued

cn slow real carbon-to-nitrogen ratio of the slow soil
pool

10.

cn woods real carbon-to-nitrogen ratio of the wood
pool

50.

frac green 2 atmos real fraction of carbon and nitrogen from
the green pools released into the atmo-
sphere with anthropogenic landcover
change; only used with lcc scheme=1
in namelist jsbach ctl

0.8

frac harvest 2 atmos real fraction of harvested carbon imme-
diately released into the atmosphere;
only used with lcc scheme=1 in
namelist jsbach ctl

0.2

frac mobile 2 atmos real fraction of nitrogen from the plant mo-
bile N pool released into the atmo-
sphere with anthropogenic landcover
change; only used with lcc scheme=1
in namelist jsbach ctl

0.8

frac reserve 2 atmos real fraction of carbon from the reserve
pool released into the atmosphere with
anthropogenic landcover change; only
used with lcc scheme=1 in namelist
jsbach ctl

0.8

frac wood 2 atmos real fraction of carbon and nitrogen from
the wood pools released into the atmo-
sphere with anthropogenic landcover
change; only used with lcc scheme=1
in namelist jsbach ctl

0.8

tau construction real decay time to 10% for the anthro-
pogenic construction pool with centen-
nial time scale [days]; only used with
lcc scheme=2 in namelist jsbach ctl

100.*365.

tau onsite green real decay time to 10% for anthropogenic
green litter, assumed to be burned
in deforestation fires [days]; only
used with lcc scheme=2 in namelist
jsbach ctl

1.*365.

tau onsite wood real decay time to 10% for anthropogenic
woody litter, assumed to be burned
in deforestation fires [days]; only
used with lcc scheme=2 in namelist
jsbach ctl

1.*365.

tau paper real decay time to 10% for the an-
thropogenic paper pool with decadal
time scale [days]; only used with
lcc scheme=2 in namelist jsbach ctl

10.*365.
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2.3.7 Namelist climbuf ctl

The climate buffer provides climate variables as multi-annual running means, minimums or
maximums. It is controlled by namelist climbuf ctl. The namelist is read in routine
config climbuf (mo climbuf).

Table 2.30: Namelist climbuf ctl

Parameter Type Description Default
climbuf file name character name of the climate buffer file. Only

used if read climbuf=.TRUE.

’climbuf.nc’

init running means logical initialize the calculation of long term
climate variables. (Should be .TRUE.

at the beginning of the second year of
an initialized experiment.)

.FALSE.

read climbuf logical read climate buffer data from an exter-
nal file.

.FALSE.

2.3.8 Namelist disturbance ctl

Fire and windthrow calculations are controlled by namelist disturbance ctl. The namelist
is read in routine config disturbance (mo disturbance). It is used only, if the disturbance
module is switched on by setting use disturbance=.TRUE. in namelist jsbach ctl (compare
table 2.35).

Table 2.31: Namelist disturbance ctl

Parameter Type Description Default
fire algorithm integer fire scheme: 0: none, 1: jsbach 1
fire frac wood 2 atmos real fraction of carbon from the wood pool

emitted to the atmosphere by fire
0.2

fire name character definition of the fire scheme by char-
acter string; overrules the settings of
fire algorithm. Possible choices: ’’,
’none’, ’jsbach’

’’

ldiag logical switch on/off additional output for de-
bugging

.FALSE.

windbreak algorithm integer windthrow scheme: 0: none, 1: jsbach 1
windbreak name character definition of the windthrow scheme

by character string; overrules the set-
tings of windbreak algorithm. Possi-
ble choices: ’’, ’none’, ’jsbach’

’’

2.3.9 Namelist dynveg ctl

The dynamic vegetation is controlled by dynveg ctl. The namelist is read in config dynveg

(mo dynveg). It is used only, if the dynamic vegetation is switched on by setting use dynveg=
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.TRUE. in namelist jsbach ctl (compare table 2.35).

Table 2.32: Namelist dynveg ctl

Parameter Type Description Default
accelerate dynveg real factor to accelerate vegetation dynam-

ics. Default: no acceleration
1.

dynveg all logical activate competition between woody
types and grasses (not recommended)

.FALSE.

dynveg feedback logical switch on/off the feedback of the
dynamic vegetation on the JSBACH
physics. (Cover fractions are kept con-
stant, while fire and windthrow still in-
fluence the carbon cycle.)

.TRUE.

fpc file name character name of an external vegetation file.
Only used if read fpc=.TRUE.

’fpc.nc’

read fpc logical read initial cover fractions from an ex-
ternal file; the file name is defined with
parameter fpc file name

.FALSE.

2.3.10 Namelist fire jsbach ctl

The standard JSBACH fire algorithm is controlled by namelist fire jsbach ctl. The namelist
is read in routine config fire jsbach (mo disturbance jsbach). It is used only, if the dis-
turbance scheme is activated by setting use disturbance=.TRUE. in namelist jsbach ctl and
fire algorithm= 1 or fire name=’jsbach’ in namelist disturbance ctl (compare tables
2.35 and 2.33).

Table 2.33: Namelist fire jsbach ctl

Parameter Type Description Default
fire litter threshold real minimum amount of litter needed for

fire [mol(C)/m2(gridbox)]
16.67

fire minimum grass real minimum fraction of act fpc of grass
PFTs to be burned each year

0.006

fire minimum woody real minimum fraction of act fpc of woody
PFTs to be burned each year

0.002

fire rel hum threshold real maximum relative humidity for fire [%] 70.
fire tau grass real return period of fire for grass PFT

[year] assuming 0% relative humidity
[year]

2.

fire tau woody real return period of fire for woody PFT
[year] assuming 0% relative humidity
[year]

6.
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2.3.11 Namelist hydrology ctl

The ECHAM hydrology is controlled by namelist hydrology ctl. The hydrology module is
active only in runs with ECHAM if lhd=.TRUE. in echam namelist runctl. The hydrology
namelist is read in routine config hydrology (mo hydrology).

Table 2.34: Namelist hydrology ctl

Parameter Type Description Default
diag water budget logical switches on/off additional water budget

diagnostics
.FALSE.

fblog1 real latitude of first grid cell for outflow di-
agnostics (with nhd diag=99)

0.

fblog2 real latitude of second grid cell for outflow
diagnostics (with nhd diag=99)

0.

fllog1 real longitude of first grid cell for outflow
diagnostics (with nhd diag=99)

0.

fllog2 real longitude of second grid cell for outflow
diagnostics (with nhd diag=99)

0.

lbase logical switches on/off baseflow calculation .TRUE.
ldebughd logical switches on/off additional output for

debugging
.FALSE.

lhd highres logical switches on/off outflow diagnostic on
HD model grid (0.5 deg.)

.FALSE.

locean logical closure of water budget for ocean cou-
pling

.TRUE.

nhd diag integer region number for outflow diagnostic
(in former versions isolog): 0: none,
1: Bothnian Bay/Sea, 2: Torneaelven,
4: St.Lawrence, 5: Paraguay, 6: Oder,
7: Elbe, 8: Oranje, 9: Amudarya, 10:
Lena, 99: two user defined grid cells de-
fined by the longitude and latitudes of
fblog1, fllog1, fblog2 and fllog2

0

2.3.12 Namelist jsbach ctl

The namelist jsbach ctl includes the basic parameters for a JSBACH simulation. It is needed
to switch on or off the different physical modules as e.g. the dynamic vegetation or the albedo
scheme. Besides, it controls file names and other IO-options. The namelist is read in routine
jsbach config of module mo jsbach.

Table 2.35: Namelist jsbach ctl

Parameter Type Description Default
coupling character Type of coupling: implicit ’implicit’

table continued on next page
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Table 2.35: jsbach ctl — continued

debug logical additional output for debugging .FALSE.

debug Cconservation logical additional debugging output to solve
problems with carbon conservation

.FALSE.

file type integer output format: 1: grib, 2: netcdf, 4:
netcdf2, 6: netcdf4

1

file ztype integer output compression type: 0: none, 1:
szip (for grib), 2: zip (for netcdf4)

0

grid file character input file containing grid information ’jsbach.nc’

lcc forcing type character Scheme for (anthropogenic) landcover
changes. NONE: no landcover change;
MAPS: read maps of landcover fractions;
TRANSITIONS: read maps with landuse
transitions

’NONE’

lcc scheme integer scheme for anthropogenic carbon pools:
1: litter (standard jsbach scheme), 2:
according to Houghton (1983); only
used with lcc forcing type = MAPS

or TRANSITIONS

1

lctlib file character name of the land cover library file ’lctlib.def’

lpost echam logical if .TRUE., write jsbach output vari-
ables, even if they are part of the echam
output

.FALSE.

lss character land surface sceme: ECHAM ’ECHAM’

missing value real missing value for the output (ocean val-
ues)

NF FILL REAL

ntiles integer number of tiles defined on each grid cell -1
out state logical write the jsbach output stream .TRUE.

pheno scheme character phenology scheme: LOGROP: JSBACH
phenology scheme by C. H. Reick used
e.g. in CMIP5; KNORR: phenology
scheme by W. Knorr used in CCDAS

’LOGROP’

read cover fract logical read cover fractions from the JSBACH
initial file rather than from restart file

.FALSE.

soil file character file containing initial data of soil prop-
erties

’jsbach.nc’

standalone logical Type of model run; .TRUE.: stand-
alone JSBACH run; .FALSE.: JS-
BACH driven by an atmosphere model

.TRUE.

surf file character file containing initial data of the land
surface

’jsbach.nc’

test Cconservation logical switches on/off carbon conservation
test

.FALSE.

test stream logical additional stream for model testing .FALSE.

use albedo logical switches on/off a dynamic albedo
scheme

.FALSE.

table continued on next page
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Table 2.35: jsbach ctl — continued

use bethy logical switches on/off the BETHY model
(photosynthesis, respiration)

.FALSE.

use disturbance logical switches on/off the disturbance mod-
ule (independent of the dynamic veg-
etation)

.FALSE.

use dynveg logical switches on/off the dynamic vegetation
module

.FALSE.

use phenology logical switches on/off the phenology module
to calculate the LAI

.FALSE.

use roughness lai logical calculate roughness length depending
on LAI

.FALSE.

use roughness oro logical calculate roughness length including
subgrid-scale topographie

.TRUE.

veg at 1200 logical .TRUE.: write veg stream at 12:00 each
day; .FALSE.: write veg stream at the
same time steps as the other streams

.TRUE.

veg file character file containing initial data for the vege-
tation

’jsbach.nc’

with nitrogen logical calculate the nitrogen cycle (not fully
implemented in the current version).

.FALSE.

with yasso logical .TRUE.: YASSO is used for litter and
soil carbon decomposition.

.FALSE.

2.3.13 Namelist soil ctl

The configurable parameters to control the soil physics are defined in namelist soil ctl. The
namelist is read in config soil in module mo soil.

Table 2.36: Namelist soil ctl

Parameter Type Description Default
crit snow depth real critical snow depth for correction of

surface temperature for melting [m]
5.85036× 10−03

lbsoil logical separate handling of bare soil moisture
for bare soil evaporation in multi-layer
soil hydrology scheme (only with nsoil

> 1)

.TRUE.

ldiag logical switch on/off extended water balance
diagnostics

.FALSE.

moist crit fract real critical value of soil moisture above
which transpiration is not affected by
the soil moisture stress; expressed as
fraction of the maximum soil moisture
content

0.75

table continued on next page
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Table 2.36: soil ctl — continued

moist max limit real upper limit for maximum soil mois-
ture content: If positive, max moisture

from initial file is cut off at this value.

-1.

moist wilt fract real soil moisture content at permanent
wilting point, expressed as fraction of
maximum soil moisture content

0.35

nsoil integer number of soil layers (1 or 5) 1
skin res max real maximum water content of the skin

reservoir of bare soil [m]
2.× 10−04

2.3.14 Namelist windbreak jsbach ctl

The standard JSBACH windthrow algorithm is controlled by namelist windbreak jsbach ctl.
The namelist is read in routine config windbreak jsbach (mo disturbance jsbach). It
is used only, if the disturbance scheme is activated by setting use disturbance= .TRUE.

in namelist jsbach ctl and windbreak algorithm = 1 or windbreak name = ’jsbach’ in
namelist disturbance ctl (compare tables 2.35 and 2.33).

Table 2.37: Namelist windbreak jsbach ctl

Parameter Type Description Default
wind threshold real factor by which the maximum wind

speed must be larger than the climato-
logical maximum wind speed to allow
any windthrow

2.25

wind damage scale real scaling factor for windthrow. The de-
fault value corresponds to runs with
ECHAM in T63 resolution.

0.01

2.3.15 Input namelists in other files

2.3.15.1 Namelist mvctl

For each stream in the mvstreamctl namelist, a mvctl namelist has to be created. The mvctl

namelist has to be written to a file {namelist}.nml where {namelist} is the name of the re-
spective stream. For tracers, the namelist has to be written to tracer.nml. See section 2.3.1.11
also. Additional documentation can be found in cr2010 07 28 provided by S. Rast (sebas-
tian.rast@zmaw.de).

Table 2.38: Namelist mvctl

Variable type Explanation default
putmean special frequency at which the respec-

tive mean value stream shall be
written

1,’months’,’first’,0

table continued on next page
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Table 2.38: mvctl — continued

meannam(32,1:500) character list of variables (e.g. mete-
orological variables, chemical
species) for which mean values
are calculated

empty strings

stddev(1:500) integer This variable controls the cal-
culation of the mean of the
square of each variable in the
list meannam.
stddev(1) = −1: calculate the
mean square of all variables
present in meannam

stddev(i) = 0: Do not
calculate the mean of the
square of variable i except if
stddev(1) = −1
stddev(i) = 1: Calculate the
mean of the square of variable
i in list meannam.

0,0,...,0

2.4 Input data

This section provides a brief description of the input files but does not describe the input data
itself. Such a description can be found in the scientific part of the documentation.
All input files are stored in the directory
/pool/data/ECHAM6/input/r0001/

and its subdirectories for the atmospheric part and in the directory
/pool/data/JSBACH/
for the land–surface model. The input data of the atmospheric part are released in various
versions. The version r0001 contains all data needed for the basic atmosphere–only experiments
conducted for CMIP5: amip–LR, amip–MR, sstClim–LR, sstClim–MR. Transient input data
files are provided for the maximum possible time period. Some data depend on the scenario.
In this version, the rcp26, rcp45, and rcp85 scenarios are taken into account.
In /pool/data/ECHAM6/input/r0001/, you find the resolution independent data. Furthermore,
it contains directories {RES} where {RES} has to be replaced by one of the spectral model
resolutions T31, T63, T127, and T255, respectively providing resolution dependent input files.
Similarly, the resolution dependent land–surface model data are stored in subdirectories T31,
T63, etc. of the /pool/data/JSBACH directory. In the following, the vertical resolution will be
denoted by {LEV} which represents the number of vertical σ–levels preceeded by a capital L.
The most common model resolutions are T63L47 and T63L95. Currently, ECHAM6 is tuned for
the resolutions T63L47, T63L95, T127L95 only. Other resolutions may require a new tuning
of the model in order to adjust the parameters of certain equations to the particular model
resolution. Some of the input data contain information about the land–sea distribution and
therefore are provided for various ocean resolutions even if the model is not coupled to an
interactive ocean. The ocean resolution will be symbolized by {OCR}. Currently, the GR15,
GR30, and TP04 ocean resolutions are considered.
There are three kinds of input data: initial conditions, boundary conditions, and data of model
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parameters. The boundary conditions can be either “transient boundary conditions” depending
on the actual year or “climatological boundary conditions” which do not depend on the year but
may contain a seasonal cycle. The files containing the initial conditions are listed in Tab. 2.39.

Table 2.39: Initial conditions for ECHAM6

Resolution dependent ECHAM6 initial data in /pool/data/ECHAM6/input/r0001/{RES}
Link target Link name Explanation
{RES}{LEV} jan spec.nc unit.23 Variables describing the vertical

σ–coordinates, spectral fields like
divergence, vorticity etc. serving
to start the model from some ini-
tial values. These values are very
rough estimates only and do not
describe any dynamic state of the
atmosphere that occurs with high
probability!

{RES}{OCR} jan surf.nc unit.24 Surface fields like land sea mask,
glacier mask etc. for a start of the
model from initial values.

Resolution independent ECHAM6 initial data in /pool/data/ECHAM6/input/r0001/

hdstart.nc hdstart.nc Initial data for hydrological dis-
charge model.

The climatological boundary condition files are listed in Tab. 2.40. Sea surface temperature
and sea ice cover climatologies for ECHAM6 are based on 500 year–climatologies of our coupled
control simulations and are available for the T63 resolutions only. Furthermore, some of the data
are formally read by ECHAM6 but not used: The leaf area index, vegetation ratio, and albedo
e.g. are calculated by the surface model JSBACH and it is impossible to use climatological
values read from files. Actually, JSBACH reads these quantities again, but discards them also,
even if dynamic vegetation is switched off: This just means that the geographical distribution of
vegetation types is fixed in time, but the leaf area index changes with season and soil moisture
and consequently also the albedo varies with time according to the vegetation model used in
JSBACH, only the vegetation ratio remains fixed at the value read from file.
The input data for the hydrological discharge model (see Tab. 2.39 and Tab. 2.40) are not
entirely resolution independent, but the current data can be used for a wide range of resolutions.

Table 2.40: Climatological boundary conditions for ECHAM6. Some of the climatological bound-
ary conditions have to be linked to year dependent files. The year is symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6/input/r0001/{RES}
Link target Link name Explanation

table continued on next page
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Table 2.40: Climatological boundary conditions for ECHAM6 continued

{RES} ozone CMIP5 y1-y2.nc ozonyyyy 3–d ozone climatology being a
mean value over the years y1 to
y2. Currently, y1-y2=1850-1860
and 1979-1988 is available. These
files have to be linked to filenames
ozonyyyy where yyyy is the actu-
ally simulated year.

{RES}{OCR} VLTCLIM.nc unit.90 Climatological leaf area index
(monthly data).

{RES}{OCR} VGRATCLIM.nc unit.91 Climatological vegetation ratio
(monthly data).

{RES} TSLCLIM2.nc unit.92 Climatological land surface tem-
perature (monthly data).

T{RES}{OCR} piControl-
LR sst 1880-2379.nc

unit.20 Climatological sea surface tem-
peratures (monthly data, only in
T63GR15 available).

{RES}{OCR} piControl-
LR sic 1880-2379.nc

unit.96 Climatological sea ice data
(monthly data, only in T63GR15
available).

Tropospheric aerosols
aero/{RES} aeropt
kinne sw b14 coa.nc

aero coarse yyyy.nc Optical properties of coarse mode
aerosols in the solar spectral
range. Since these are mostly
of natural origin, climatological
boundary conditions are sufficient
for historic times.

aero/{RES} aeropt
kinne lw b16 coa.nc

aero farir yyyy.nc Aerosol optical properties in the
thermal spectral range. Only
coarse mode aerosols play a role.
Since these are mostly of natu-
ral origin, climatological bound-
ary conditions are sufficient for
historic times.

Land surface model JSBACH (/pool/data/JSBACH)
jsbach/

jsbach {RES}{OCR} {t} yyyy.nc
jsbach.nc Boundary conditions for land sur-

face model JSBACH. It also de-
pends on the ocean resolution be-
cause the land–sea mask does.
The structure of JSBACH may
vary with the number of tiles,
encoded in {t}=4tiles, 8tiles,
11tiles, or 12tiles. Not all
combinations of resolutions are
available.

Resolution independent data in /pool/data/ECHAM6/input/r0001/

table continued on next page
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Table 2.40: Climatological boundary conditions for ECHAM6 continued

hdpara.nc hdpara.nc Data for hydrological discharge
model.

Furthermore, various transient boundary conditions are available which can either replace their
climatological counterparts or be used as supplemental conditions. Examples for transient
boundary conditions are observed sea surface temperatures and sea ice data, transient green-
house gas concentrations or data accounting for interannual variability in solar radiation, ozone
concentration or aerosol optical properties. The historical sea surface temperature (SST) and
sea ice cover (SIC) data are taken from the Program for Climate Model Diagnosis and Inter-
comparison (PCMDI, status: November 2009). A list of possible input data can be found in
Tab. 2.41.

Table 2.41: ECHAM6 transient boundary conditions. Specific years are symbolized by yyyy.

Resolution dependent data in /pool/data/ECHAM6/input/r0001/{RES}
Link target Link name Explanation
amip/

{RES} amip2sst yyyy.nc

sstyyyy historical sea surface tempera-
tures (monthly data).

amip/

{RES} amip2sic yyyy.nc

iceyyyy historical sea ice data (monthly
data).

Tropospheric aerosols
aero/{RES} aeropt
kinne sw b14 fin yyyy.nc

aero fine yyyy.nc Optical properties of fine mode
aerosols in the solar spectrum.
These aerosols are of anthro-
pogenic origin mainly. Therefore,
they depend on the year. These
are the historical data.

aero/{RES} aeropt
kinne sw b14 fin {sc} yyyy.nc

aero fine yyyy.nc Optical properties of fine mode
aerosols in the solar spectrum.
These aerosols are of anthro-
pogenic origin mainly. Therefore,
they depend on the year. They
are provided for different scenar-
ios for the future ({sc}= rcp26,
rcp45, rcp85).

Volcanic (stratrospheric) aerosols, Stenchikov
volcano aerosols/strat

aerosol sw T{RES} yyyy.nc
strat aerosol sw yyyy.nc Aerosol optical properties of

stratospheric aerosols of volcanic
origin in the solar spectral range.

volcano aerosols/strat

aerosol ir T{RES} yyyy.nc
strat aerosol ir yyyy.nc Aerosol optical properties of

stratospheric aerosols of volcanic
origin in the thermal spectral
range.

Volcanic (stratrospheric) aerosols, provided by HAM

table continued on next page
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Table 2.41: Transient boundary conditions continued

N.N. aoddz ham yyyy.nc Aerosol optical properties as pro-
vided by the HAM model. These
data have to be used together
with the b30w120 parameter file
of Tab. 2.42. The aerosol type
described by the HAM model has
to be compatible with that of the
parameter file.

Transient 3d–ozone data in /pool/data/ECHAM6/input/r0001/{RES}/ozone
{RES} ozone CMIP5

yyyy.nc

ozonyyyy Historic 3d–distribution of ozone
in the stratosphere and tropo-
sphere.

{RES} ozone CMIP5

{sc} yyyy.nc
ozonyyyy 3d–distribution of ozone in the

stratosphere and troposphere for
the scenarios RCP26, RCP45, and
RCP85.

Resolution independent data in /pool/data/ECHAM6/input/r0001/

Volcanic (stratrospheric) aerosols, T. Crowley
volc data aodreff crow.dat Stratospheric aerosol optical

properties of volcanic aerosols
compiled by T. Crowley. All
years are in one file. The b30w120
parameter file of Tab. 2.42 has to
be used together with these data.

Transient solar irradiance in /pool/data/ECHAM6/input/r0001/solar irradiance

swflux 14band yyyy.nc swflux yyyy.nc Monthly spectral solar irradiance
for year yyyy.

Greenhouse gas scenarios in /pool/data/ECHAM6/input/r0001/

greenhouse {sc}.nc greenhouse gases.nc Transient greenhouse gas concen-
trations (all years in one file)
for the scenarios {sc}= rcp26,
rcp45, rcp85. The rcp45–file
contains the historic data also.

Some of the equations used in ECHAM6 need tables of parameters. E.g. the radiation needs
temperature and pressure (concentration) dependent absorption coefficients, the calculation of
the aerosol optical properties at all wave lengths from the effective aerosol radius and the aerosol
optical depth at a certain wavelength needs conversion factors. The surface model JSBACH
needs further input parameters that are provided in a kind of a standard input file. A list of
the input files containing model parameters is provided in Tab. 2.42.

Table 2.42: Input files for ECHAM6 containing parameters for various physical processes in
/pool/data/ECHAM6/input/r0001/

Link target Link name Explanation

table continued on next page
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Table 2.42: Parameters files continued

surrta data rrtadata Tables for RRTM radiation
scheme — solar radiation.

rrtmg lw.nc rrtmg lw.nc Tables for RRTMG radiation
scheme — thermal radiation.

ECHAM6 CldOptProps.nc ECHAM6 CldOptProps.nc Optical properties of clouds.
../../b30w120 aero volc tables.dat Parametrizations of the aerosol

optical properties in the case of
T. Crowley aerosols and aerosols
provided by HAM. This table has
to be compatible with the aerosol
data.

../../jsbach/

lctlib nlct21.def rev5793

lctlib.def Parametrization of properties of
vegetation and land model JS-
BACH. (imported from the cos-
mos svn)

In some rare cases, input data for diagnostic subroutines are needed. This is the case for
the station diagnostic that writes values at different geographic locations (CFMIP2 sites by
K. Taylor). The file and link name is listed in Tab. 2.43

Table 2.43: Input files for diagnostics provided in /pool/data/ECHAM6/input/r0001//CFMIP

Link target Link name Explanation
pointlocations.txt pointlocations.txt List of CFMIP2 sites as given by

K. Taylor. At these locations,
surface and column variables are
written to output files.

2.5 Output files and variables

The number and names of outputfiles depend on the model configuration. Tab. 2.44 lists all
standard output files and gives an overview of the kind of variables being in these files. The
names of the outputfiles are composed of the experiment name EXPNAME as it is given by the
out expname variable of the runctl namelist (see section 2.3.1.18), a date information DATE

corresponding to the simulation date at which the output file was opened and an extension
EXT that describes the output stream or family of output streams written to this file. GRIB
format output files do not have further extensions, netcdf format output files have the additional
extension .nc. The filename is therefore composed as EXPNAME DATE EXT[.nc].
All the variables that are written to an output file are members of so–called streams, a special
data structure that allows for standardized output. Not all variables of a stream are written to
output files. Detailed information about all streams and variables are written to the standard
error output device when ECHAM6 is started.
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Table 2.44: Output files of ECHAM6

Extension EXT Content
cfdiag diagnostic of 3–dimensional radiation and convec-

tive mass flux
co2 diagnostic of CO2 submodel (carbon cycle)
cosp COSP simulator output
echam main echam outputfile comprising several echam

streams containing 2– and 3–d atmospheric grid-
point and spectral variables

forcing radiation fluxes and heating rates
surf variables from the surface model JSBACH
tdiag tendency diagnostic
tracer mass mixing ratios of (transported) trace gas

species

The number of variables in each output stream also depend on the model configuration. In
the case of GRIB output, information about code numbers and variables can be found in the
respective files EXPNAME DATE EXT.codes. In the case of netcdf output, the explanation of
the variable can be found inside the netcdf files. Some of the variables are mean values over
the output interval, some are in spectral space, others in grid point space. We give tables of
outputvariables of the most important output files only.

2.5.1 Output file echam

The echam output file combines the variables of several output streams (g3b, gl, and sp) and
contains the main prognostic and diagonstic ECHAM6 output variables describing the dynamic
state of the atmosphere.

Table 2.45: Output file echam. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
abso4 235 g kg/m2 2d g3b anthropogenic sulfur bur-

den
aclcac 223 g — 3d g3b cloud cover
aclcov 164 g — 2d g3b total cloud cover
ahfcon 208 g W/m2 2d g3b conductive heat flux

through ice
ahfice 125 g W/m2 2d g3b conductive heat flux
ahfl 147 g W/m2 2d g3b latent heat flux
ahfliac 110 g W/m2 2d g3b latent heat flux over ice
ahfllac 112 g W/m2 2d g3b latent heat flux over land
ahflwac 111 g W/m2 2d g3b latent heat flux over water

table continued on next page
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Table 2.45: Output file echam — continued

ahfres 209 g W/m2 2d g3b melting of ice
ahfs 146 g W/m2 2d g3b sensible heat flux
ahfsiac 119 g W/m2 2d g3b sensible heat flux over ice
ahfslac 121 g W/m2 2d g3b sensible heat flux over land
ahfswac 120 g W/m2 2d g3b sensible heat flux over water
albedo 175 g — 2d g3b surface albedo
albedo nir 101 g — 2d g3b surface albedo for near in-

frared radiation range
albedo nir dif 82 g — 2d g3b surface albedo for near in-

frared radiation range, dif-
fuse

albedo nir dir 80 g — 2d g3b surface albedo for near in-
frared radiation range, di-
rect

albedo vis 100 g — 2d g3b surface albedo for visible ra-
diation range

albedo vis dif 81 g — 2d g3b surface albedo for visible ra-
diation range, diffuse

albedo vis dir 79 g — 2d g3b surface albedo for visible ra-
diation range, direct

alsobs 72 g — 2d g3b albedo of bare ice and snow
without melt ponds

alsoi 122 g — 2d g3b albedo of ice
alsol 124 g — 2d g3b albedo of land
alsom 71 g — 2d g3b albedo of melt ponds
alsow 123 g — 2d g3b albedo of water
ameltdepth 77 g m 2d g3b total melt pond depth
ameltfrac 78 g — 2d g3b fractional area of melt

ponds on sea ice
amlcorac 89 g W/m2 2d g3b mixed layer flux correction
ao3 236 g — 3d g3b mass mixing ratio of IPCC

ozone
apmeb 137 g kg/(m2s) 2d g3b vertical integral tendency of

water
aprc 143 g kg/(m2s) 2d g3b convective precipitation
aprl 142 g kg/(m2s) 2d g3b large scale precipitation
aprs 144 g kg/(m2s) 2d g3b snow fall
aps 134 g Pa 2d g3b surface pressure
az0i 116 g m 2d g3b roughness length over ice
az0l 118 g m 2d g3b roughness length over land
az0w 117 g m 2d g3b roughness length over water
barefrac 70 g — 2d g3b bare ice fraction
dew2 168 g K 2d g3b dew point temperature at

2m above surface
evap 182 g kg/(m2s) 2d g3b evaporation

table continued on next page
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Table 2.45: Output file echam — continued

evapiac 113 g kg/(m2s) 2d g3b evaporation over ice
evaplac 115 g kg/(m2s) 2d g3b evaporation over land
evapwac 114 g kg/(m2s) 2d g3b evaporation over water
fage 68 g — 2d g3b aging factor of snow on ice
friac 97 g — 2d g3b ice cover fraction of grid box
geosp 129 g m2/s2 2d g3b surface geopotential (orog-

raphy)
glac 232 g — 2d g3b fraction of land covered by

glaciers
gld 213 g m 2d g3b glacier depth
lsp 152 s — 2d sp nat. logarithm of surface

pressure
q 133 g — 3d gl specific humidity
qres 126 g W/m2 2d g3b residual heat flux for melt-

ing sea ice
qvi 230 g kg/m2 2d g3b vertically integrated water

vapour
relhum 157 g — 3d g3b relative humidity
sd 155 s 1/s 3d sp divergence
seaice 210 g — 2d g3b ice cover (fraction of 1-

SLM)
siced 211 g m 2d g3b ice depth
sicepdi 74 g m 2d g3b ice thickness on melt pond
sicepdw 73 g m 2d g3b melt pond depth on sea ice
sicepres 76 g W/m2 2d g3b residual heat flux
slf 194 g — 2d g3b sea land fraction
slm 172 g — 2d g3b land sea mask (1=land,

0=sea/lake)
sn 141 g m 2d g3b snow depth
snc 233 g m 2d g3b snow depth at the canopy
sni 214 g m 2d g3b water equivalent of snow on

ice
snifrac 69 g — 2d g3b fraction of ice covered with

snow
sofliac 94 g W/m2 2d g3b solar radiation energy flux

over ice
sofllac 96 g W/m2 2d g3b solar radiation energy flux

over land
soflwac 95 g W/m2 2d g3b solar radiation energy flux

over water
srad0d 184 g W/m2 2d g3b incoming solar radiation en-

ergy flux at top of atmo-
sphere

srad0u 203 g W/m2 2d g3b upward solar radiation en-
ergy flux at top of atmo-
sphere

table continued on next page
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Table 2.45: Output file echam — continued

srad0 178 g W/m2 2d g3b net solar radiation energy
flux at top of atmosphere

sradl 86 g W/m2 2d g3b solar radiation at 200 hPa
srads 176 g W/m2 2d g3b net solar radiation energy

flux at surface
sradsu 204 g W/m2 2d g3b upward solar radiation en-

ergy flux at surface
sraf0 187 g W/m2 2d g3b net solar radiation energy

flux at top of atmosphere for
clear sky conditions

srafl 88 g W/m2 2d g3b solar radiation energy flux
at 200 hPa for clear sky con-
ditions

srafs 185 g W/m2 2d g3b net solar radiation energy
flux at surface for clear sky
conditions

st 130 s K 3d sp temperature
svo 138 s 1/s 3d sp vorticity
t2max 201 g K 2d g3b maximum temperature at

2m above surface
t2min 202 g K 2d g3b minimum temperature at

2m above surface
temp2 167 g K 2d g3b temperature at 2m above

surface
thvsig 238 g K 2d g3b standard deviation of vir-

tual potential temperature
at half level klevm1

topmax 217 g Pa 2d g3b pressure of height level of
convective cloud tops

tpot 239 g K 3d g3b potential temperature
trad0 179 g W/m2 2d g3b net thermal radiation en-

ergy flux at top of atmo-
sphere

tradl 85 g W/m2 2d g3b thermal radiation energy
flux at 200 hPa

trads 177 g W/m2 2d g3b net thermal radiation en-
ergy flux at surface

tradsu 205 g W/m2 2d g3b upward thermal radiation
energy flux at surface

traf0 188 g W/m2 2d g3b net thermal radiation en-
ergy flux at top of atmo-
sphere for clear sky condi-
tions

trafl 87 g W/m2 2d g3b thermal radiation energy
flux at 200 hPa for clear sky
conditions

table continued on next page



2.5. OUTPUT FILES AND VARIABLES 67

Table 2.45: Output file echam — continued

trafs 186 g W/m2 2d g3b thermal radiation energy
flux at surface for clear sky
conditions

trfliac 91 g W/m2 2d g3b thermal radiation energy
flux over ice

trfllac 93 g W/m2 2d g3b thermal radiation energy
flux over land

trflwac 92 g W/m2 2d g3b thermal radiation energy
flux over water

tropo 237 g Pa 2d g3b pressure of height level
where tropopause is located
according to WMO defini-
tion

tsi 102 g K 2d g3b surface temperature of ice
tsicepdi 75 g K 2d g3b ice temperature on frozen

melt pond
tslm1 139 g K 2d g3b surface temperature of land
tsurf 169 g K 2d g3b surface temperature
tsw 103 g K 2d g3b surface temperature of wa-

ter
u10 165 g m/s 2d g3b zonal wind velocity at 10m

above surface
ustr 180 g Pa 2d g3b zonal wind stress
ustri 104 g Pa 2d g3b zonal wind stress over ice
ustrl 108 g Pa 2d g3b zonal wind stress over land
ustrw 106 g Pa 2d g3b zonal wind stress over water
v10 166 g m/s 2d g3b meridional wind velocity at

10m above surface
vdis 145 g W/m2 2d g3b boundary layer dissipation
vdisgw 197 g W/m2 2d g3b gravity dissipation
vstr 181 g Pa 2d g3b meridional wind stress
vstri 105 g Pa 2d g3b meridional wind stress over

ice
vstrl 109 g Pa 2d g3b meridional wind stress over

land
vstrw 107 g Pa 2d g3b meridional wind stress over

water
wimax 216 g m/s 2d g3b maximum wind speed at

10m above surface
wind10 171 g m/s 2d g3b wind velocity at 10m above

surface
wl 193 g m 2d g3b skin reservoir content
ws 140 g m 2d g3b soil wetness
wsmx 229 g m 2d g3b field capacity of soil
xi 154 g — 3d gl fractional cloud ice

table continued on next page
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Table 2.45: Output file echam — continued

xivi 150 g kg/m2 2d g3b vertically integrated cloud
ice

xl 153 g — 3d gl fractional cloud water
xlvi 231 g kg/m2 2d g3b vertically integrated cloud

water

2.5.2 Output file forcing

The forcing output file contains the instantaneous radiative aerosol forcing if it was required
by the setting of the corresponding namelist parameters (see also Appendix A.7). In the table
of the output variables, we denote the net short wave radiation flux under clear sky conditions
by F>sw,clear at the top of any model layer and by F⊥sw,clear at the bottom of this layer. Similarly,
we symbolize the net short wave radiation flux under all sky condition at the top of any
model layer by F>sw,all and by F⊥sw,all at its bottom. The corresponding quantities for thermal

radiation are denoted by F>lw,clear, F
⊥
lw,clear, F

>
lw,all, and F⊥lw,all, respectively. A superscript 0

is added if these quantities are meant for an atmosphere free of aerosols: F>,0sw,clear, F
⊥,0
sw,clear,

F>,0sw,all, F
⊥,0
sw,all, F

>,0
lw,clear, F

⊥,0
lw,clear, F

>,0
lw,all, F

⊥,0
lw,all. With a certain conversion factor ch, the heating

rates with and without aerosols can be obtained from the radiation fluxes. The subscript sw
indicates quantities calculated for the solar radiation and lw indicates quantities calculated for
the thermal radiation range:

T ′sw := (F>sw,all − F⊥sw,all)ch

T ′lw := (F>lw,all − F⊥lw,all)ch

T ′
0
sw := (F>,0sw,all − F

⊥,0
sw,all)ch

T ′
0
lw := (F>,0lw,all − F

⊥,0
lw,all)ch

From these quantities, we obtain the heating rate forcing or heating rate anomalies ∆T ′sw and
∆T ′lw for solar and thermal radiation:

∆T ′sw := T ′sw − T ′
0
sw

∆T ′lw := T ′lw − T ′
0
lw

Table 2.46: Output file forcing. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
aps see Tab. 2.45

d aflx lw 25 g W/m2 3d forcing F>lw,all − F
>,0
lw,all

table continued on next page
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Table 2.46: Output file forcing — continued

d aflx lwc 26 g W/m2 3d forcing F>lw,clear − F
>,0
lw,clear

d aflx sw 15 g W/m2 3d forcing F>sw,all − F
>,0
sw,all

d aflx swc 16 g W/m2 3d forcing F>sw,clear − F
>,0
sw,clear

FLW CLEAR SUR 23 g W/m2 2d forcing F⊥lw,clear−F
⊥,0
lw,clear at the sur-

face

FLW CLEAR TOP 21 g W/m2 2d forcing F>lw,clear − F
>,0
lw,clear at the top

of the atmosphere

FLW TOTAL SUR 23 g W/m2 2d forcing F⊥lw,all−F
⊥,0
lw,all at the surface

FLW TOTAL TOP 22 g W/m2 2d forcing F>lw,all − F
>,0
lw,all at the top of

the atmosphere

FSW CLEAR SUR 13 g W/m2 2d forcing F⊥sw,clear−F
⊥,0
sw,clear at the sur-

face

FSW CLEAR TOP 11 g W/m2 2d forcing F>sw,clear−F
>,0
sw,clear at the top

of the atmosphere

FSW TOTAL SUR 14 g W/m2 2d forcing F⊥sw,all−F
⊥,0
sw,all at the surface

FSW TOTAL TOP 12 g W/m2 2d forcing F>sw,all − F
>,0
sw,all at the top of

the atmosphere
gboxarea see Tab. 2.45
geosp see Tab. 2.45
lsp see Tab. 2.45
netht lw 27 g K/d 3d forcing ∆T ′lw
netht sw 17 g K/d 3d forcing ∆T ′sw

2.5.3 Output files station

The output of the CFMIP2 station diagnostic is written to a separate file for each station (site).
The outputfiles have names EXPNAME DATE cfSitesxxxx.nc where xxxx is the four–digit number
of the respective site in the table of K. Tayler as they are defined in the file pointlocations.txt
(see Tab. 2.43).

Table 2.47: Output file for each of the CFMIP2 sites. Instantaneous variables are of type g,
variables averaged over time are of type g. Surface variables are marked by 1ds, variables of
which the average of the grid box is given are marked as 1d, column variables are marked as
2d in the “dimension” column. The entry in the “stream” column gives information about
the internal ECHAM6 stream from which the corresponding variable was collected. The original
name of this variable is given in parenthesis.

Name Type Unit Dimension Stream Explanation
aclcov g – 1ds g3b (aclcov) total cloud cover
aprl g kg/(m2s) 1ds g3b (aprl) large scale precipita-

tion
cct g Pa 1d g3b (topmax) pressure of altitude

level of convective
cloud tops

table continued on next page
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Table 2.47: CFMIP2 output — continued

cl g – 2d g3b (aclc) cloud cover
cli g – 2d gl (xi) fractional cloud ice
clivi g kg/m2 1ds g3b (xivi) vertically integrated

cloud ice
clw g – 2d gl (xl) fractional cloud water
clwvi g kg/m2 1ds g3b (xlvi) vertically integrated

cloud water
dqdt cloud g 1/day 2d tdiag (dqdt cloud) tendency of specific

humidity due to cloud
scheme

dqdt cucall g 1/day 2d tdiag (dqdt cucall) tendency of specific
humidity due to con-
vection

dqdt vdiff g 1/day 2d tdiag (dqdt vdiff) tendency of specific
humidity due to verti-
cal diffusion

dtdt cucall g K/day 2d tdiag (dtdt cucall) tendency of tempera-
ture due to convection

dtdt cloud g K/day 2d tdiag (dtdt cloud) tendency of temper-
ature due to cloud
scheme

dtdt hines g K/day 2d tdiag (dtdt hines) tendency of tem-
perature due to
gravity waves (Hines
parametrization)

dtdt rheat lw g K/day 2d tdiag (dtdt rheat lw) tendency of temper-
ature due to radia-
tive heating (thermal
wavelength bands)

dtdt rheat sw g K/day 2d tdiag (dtdt rheat sw) tendency of tempera-
ture due to radiative
heating (solar wave-
length bands)

dtdt sso g K/day 2d tdiag (dtdt sso) tendency of tempera-
ture due to orographic
gravity waves

dtdt vdiff g K/day 2d tdiag (dtdt vdiff) tendency of tempera-
ture due to vertical
diffusion

evspsbl g kg/(m2s) 1ds g3b (evap) evaporation from the
surface

geosp g m2/s2 1ds g3b (geosp) surface geopotential
(orography)

hur g – 2d g3b (relhum) relative humidity
hus g – 2d gl (q) specific humidity

table continued on next page
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Table 2.47: CFMIP2 output — continued

mc g kg/(m2s) 2d cfdiag (imc) net upward convective
mass flux

mhfls g W/m2 1ds g3b (ahfl) latent heat flux
mhfss g W/m2 1ds g3b (ahfs) sensible heat flux
mrlus g W/m2 1ds g3b (tradsu) upward thermal radia-

tion energy flux at sur-
face

mrlut g W/m2 1d g3b (trad0) net thermal radiation
energy flux at top of
atmosphere

mrlutcs g W/m2 1d g3b (traf0) net thermal radiation
energy flux at top of
atmosphere for clear
sky conditions

mrsus g W/m2 1ds g3b (sradsu) upward solar radiation
energy flux at surface

mrsut g W/m2 1d g3b (srad0u) upward solar radiation
energy flux at top of
atmosphere

prc g kg/(m2s) 1ds g3b (aprc) convective precipita-
tion

prsn g kg/(m2s) 1ds g3b (aprs) snow fall
prw g kg/m2 1ds g3b (qvi) vertically integrated

water vapour
ps g Pa 1ds g3b (aps) surface pressure
rld g W/m2 2d cfdiag (irld) downward energy flux

of radiation integrated
over thermal wave-
length bands

rldcs g W/m2 2d cfdiag (irldcs) downward energy flux
of radiation integrated
over thermal wave-
length bands under
clear sky conditions

rlu g W/m2 2d cfdiag (irlu) upward energy flux
of radiation integrated
over thermal wave-
length bands

rlucs g W/m2 2d cfdiag (irlucs) upward energy flux
of radiation integrated
over thermal wave-
length bands under
clear sky conditions

table continued on next page
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Table 2.47: CFMIP2 output — continued

rsd g W/m2 2d cfdiag (irsd) downward energy flux
of radiation integrated
over solar wavelength
bands

rsdcs g W/m2 2d cfdiag (irsdcs) downward energy flux
of radiation integrated
over solar wavelength
bands under clear sky
conditions

rsdt g W/m2 1d g3b (srad0d) incoming solar radia-
tion energy flux at top
of atmosphere

rsu g W/m2 2d cfdiag (irsu) upward energy flux
of radiation integrated
over solar wavelength
bands

rsucs g W/m2 2d cfdiag (irsucs) upward energy flux
of radiation integrated
over solar wavelength
bands under clear sky
conditions

sfcWind g m/s 1d g3b (wind10) 10 meter wind
slm g – 1ds g3b (slm) land sea mask

(1=land, 0=sea/lake)
srads g W/m2 1ds g3b (srads) net solar radiation en-

ergy flux at surface
srafs g W/m2 1ds g3b (srafs) net solar radiation en-

ergy flux at surface for
clear sky conditions

sraf0 g W/m2 1d g3b (sraf0) net solar radiation en-
ergy flux at top of at-
mosphere for clear sky
conditions

ta g K 2d g1a (tm1) temperature at time
step t − ∆t (not time
filtered?)

tas g K 1d g3b (temp2) temperature 2m above
the surface

tauu g m/s 1d g3b (ustr) zonal wind stress
tauv g m/s 1d g3b (vstr) meridional wind stress
trads g W/m2 1ds g3b (trads) net thermal radiation

energy flux at surface
trafs g W/m2 1ds g3b (trafs) net thermal radiation

energy flux at surface
for clear sky condi-
tions

table continued on next page
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Table 2.47: CFMIP2 output — continued

ts g K 1ds g3b (tsurf) surface temperature
ua g m/s 2d g2a (um1) zonal wind velocity at

time step t − ∆t (not
time filtered?); cau-
tion: this variable is
multiplied by the co-
sine of the latitudes
at some points in
ECHAM6, but not here

uas g m/s 1d g3b (u10) zonal wind velocity
10m above the surface

va g m/s 2d g2a (vm1) meridional wind ve-
locity at time step
t − ∆t (not time fil-
tered?); caution: this
variable is multiplied
by the cosine of the
latitudes at some
points in ECHAM6, but
not here

vas g m/s 1d g3b (v10) meridional wind ve-
locity 10m above the
surface

wap g Pa/s 2d – vertical velocity ω
zg g m2/s2 2d – geopotential over

ground

2.5.4 Output file tdiag

Wind, temperature, and moisture tendencies due to various processes are collected in this
output file. All the tendencies are instantaneous values the mean values of which may be
calculated during a model run using the mean value stream. The actual content of the tdiag
output file depends on the exact choice of output variables in the tdiagctl namelist (see
Sec. 2.3.1.25).

Table 2.48: Output file tdiag. The type of the output fields can be g (instantaneous grid
point variable), g (mean value over the output interval of grid point variable), s (spectral space
variable). The dimension is either 2d (variable depends on longitudes and latitudes only), 3d
(variable depends on longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
aps see Tab. 2.45
dqdt cloud 36 g 1/d 3d tdiag dq/dt due to processes com-

puted by the subroutine
cloud

table continued on next page
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Table 2.48: Output file tdiag — continued

dqdt cucall 35 g 1/d 3d tdiag dq/dt due to processes com-
puted by the subroutine
cucall (convective clouds)

dqdt vdiff 31 g 1/d 3d tdiag dq/dt due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dtdt cloud 6 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
cloud

dtdt cucall 5 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
cucall (convective clouds)

dtdt hines 3 g K/d 3d tdiag dT/dt due to processes com-
puted by the Hines gravity
wave parametrization

dtdt rheat lw 72 g K/d 3d tdiag dT/dt due to radiative heat-
ing caused by radiation in
the thermal spectral range

dtdt rheat sw 62 g K/d 3d tdiag dT/dt due to radiative heat-
ing caused by radiation in
the solar spectral range

dtdt sso 4 g K/d 3d tdiag dT/dt due to gravity wave
drag

dtdt vdiff 1 g K/d 3d tdiag dT/dt due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dudt cucall 15 g m/s/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
cucall (convective clouds)

dudt hines 13 g m/s/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the Hines gravity
wave parametrization

dudt sso 14 g m/s/d 3d tdiag du/dt (zonal wind compo-
nent) due to gravity wave
drag

dudt vdiff 11 g m/s/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dvdt cucall 25 g m/s/d 3d tdiag dv/dt (meridional wind
component) due to pro-
cesses computed by the
subroutine cucall (convec-
tive clouds)

table continued on next page
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Table 2.48: Output file tdiag — continued

dvdt hines 23 g m/s/d 3d tdiag dv/dt (zonal wind compo-
nent) due to processes com-
puted by the Hines gravity
wave parametrization

dvdt sso 24 g m/s/d 3d tdiag dv/dt (zonal wind compo-
nent) due to gravity wave
drag

dvdt vdiff 21 g m/s/d 3d tdiag du/dt (zonal wind compo-
nent) due to processes com-
puted by the subroutine
vdiff (vertical diffusion)

dxidt cloud 56 g 1/d 3d tdiag dxi/dt (cloud water ice) due
to processes computed by
the subroutine cloud

dxidt vdiff 51 g 1/d 3d tdiag dxi/dt (cloud water ice) due
to processes computed by
the subroutine vdiff (ver-
tical diffusion)

dxldt cloud 46 g 1/d 3d tdiag dxl/dt (cloud water) due to
processes computed by the
subroutine cloud

dxldt vdiff 41 g 1/d 3d tdiag dxl/dt (cloud water) due to
processes computed by the
subroutine vdiff (vertical
diffusion)

gboxarea see Tab. 2.45
geosp see Tab. 2.45
lsp see Tab. 2.45
st see Tab. 2.45
tm1 see Tab. 2.45

2.6 Run scripts

2.6.1 Systematic technical testing of ECHAM6

In many cases, scientists wish to modify the ECHAM6 code for their special applications. Before
any “production” simulation can be started, the modified ECHAM6 version has to be tested
thoroughly. The purpose of this collection of korn shell scripts is to provide a systematic and
easy to use test bed of the ECHAM6 code on a technical level. These test scripts perform very
short simulations in the T31L47 resolution over 12 time steps in different model configurations
in order to trap errors in the code that cause technical malfunctions. However, this kind of
tests can not detect any scientific failure or evaluate the scientific quality of the results. The
tests rely on a comparison of the output of 12 time steps using the cdo diff tool. We apply
the term that the results of two simulations are “bit identical” if the cdo diff command does
not find differences between all netcdf or GRIB output files of these two simulations. This
means that the output on the standard output device of these two simulations is allowed to be
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different, e.g. by new messages for a newly built in submodel facility. Futhermore, it is only
checked whether the netcdf representation of the output of the two simulations is bit–identical
but not whether all variables during the run of the ECHAM6 program have bit identical values in
both simulations. In addition to tests on one model version that will be called the test version,
such a test version of the model can be compared to a reference version in the so–called update
test.
The package of scripts performing these tests can be used on various computers without queue-
ing system and can be modified in such a way that individual namelists and input data can be
provided to the test and reference model.
The following tests and combinations of them can be performed by the test tool (including
checkout and compilation of the model which is always performed):

compile: This is not a real test. The respective test version is checked out from the svn version
control system if necessary and compiled, but no run is performed.

single test: In this test, the test version is (checked out, compiled, and) run for 12 time steps.
The test is successful if the program does not crash.

debug test: This runs the single test, but on a single processor only to allow for debugging.

parallel test: For this test, a simulation of the test ECHAM6 version over 12 time steps is
performed on 1 and 2 processors, respectively, and the result is compared by the cdo

diff tool for every time step. The test simulation on a single processor is also performed
using the parallel mode of the program. It is therefore not a test for the version of ECHAM6
without message passing interface (mpi). With this kind of test, possible parallelization
errors can be detected like the usage of variables or fields which were not sent to all
processors. The result of these two simulations should be bit identical. On massive
parallel machines, using a lot of processors distributed over several nodes further problems
may occur even if this test is passed. Such problems are often either subtle errors in the
usage of mpi or compiler problems. Supplemental tests have to be performed on a later
stage when the program is ported to such a platform.

nproma test: The section of the globe that is present on a processor after distribution of the
data onto the processors, is vectorized by blocks of maximum length nproma. This means
that — even if only one processor is used — surface fields of the earth do not simply
have two dimensions of the size of longitudes nlon and latitudes nlat but are reshaped
to ngpblks blocks of maximum length nproma. Since nproma may not be a divisor of
nlon×nlat, there may be a last block that contains fewer than nproma elements. This may
lead to problems in the code, if such non–initialized elements of the last block are used
accidentally. The nproma test traps such errors by using two different nproma lengths of
17 and 23 which are both not divisors of nlon in the T31 resolution in the test simulations
and comparing the results of 12 time steps. The results should be bit–identical.

rerun test: ECHAM6 has the possibility to split up a long term simulation into several runs of
a shorter time period and to restart the model at a certain date. The results after restart
are bit identical with those of a simulation without restart. There is a large variety of
errors associated with a failure of the restart facility which can not all be trapped by this
test like wrong scripting of the use of transient boundary conditions, but to pass this test
is a minimum requirement. The base simulation starts at 1999-12-31, 22:00:00h, writes a
restart file at 23:45:00h. It stops after a total of 12 time steps. The rerun files are used to
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restart the program and to complete the 12 times steps. The five time steps after restart
are then compared with the simulation that was not interrupted. The results should be
bit–identical.

update test: This test compares the results of two simulations with different model versions
(test version versus reference version). Under certain circumstances, bit–identical results
may be required in this test.

submodel off test: The above standard tests are all run in a model configuration that com-
prises submodels (configuration similar to the CMIP–5 simulations). In some cases, one
may be interested in a configuration without any submodel. This test tries to run ECHAM6

without any submodel. If two revisions are compared, the results of this model configu-
ration are also compared for the test and reference revision.

2.6.1.1 System requirements

The ECHAM6 test scripts can be adapted to UNIX computers without queuing system. The
automatic configure procedure for the model compilation has to work and the environment has
to provide the possibility to run programs using message passing interface (mpi). The initial
and boundary condition data of ECHAM6 have to be directly accessible in some directory. If
there is no direct access to the version control system of echam (svn), individual model versions
on the computer may be used in the tests, but the path name of the location of these model
versions has to follow the below described conventions.

2.6.1.2 Description of the scripts

In figure 2.1, we present the flow chart of the scripts performing the test simulations of ECHAM6
and the comparison of the results. The scripts need some additional variables that are written
to files by the master script test echam6.sh and read from these files by the dependent scripts.
The variables can be set in the master script as described in Tab. 2.49. The corresponding files
must not be modified by hand. The file c.dat contains the module name of the C compiler,
the file fortran.dat contains the module name of the fortran compiler, the file mpirun.dat

contains the absolute path and name of the command to start programs using message passing
interface (mpi), the file outfiletype.dat contains a number associated with the type of the
output files (1 for GRIB format and 2 for netcdf format).

test echam6.sh: This script contains a definition part where all the path names and the model
version for the test and reference model must be set. It is also the place at which the key
word for the kind of test is defined. It calls the scripts for downloading the respective
model versions from svn if they are not yet present on your computer and calls the compile
and test run scripts.

test directories.sh: Checks the existance of the directories and the svn URL of the test and
reference model. You may enter your special settings on the command line if one of the
items is not found. If it is found, it is used without further notice. Only the relevant
items are checked.

compile echam6.sh: This script downloads the respective model version from the revision
administration system svn if it is not yet present on your computer and compiles the
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model. Compilation can be forced. Note that the compiler options depend on the settings
in the input scripts of the configure procedure and may be different from revision to
revision. Different compiler options may lead to numerically different results although
the algorithms in the code are identical!

test mode.sh: This family of scripts performs the various simulations and the comparison of
the results. The mode is one of single, parallel, nproma, rerun, update, submodeloff,
parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodeloff, all.

test echam6 run.sh: General run script for echam.

test echam6 {test,reference} links.sh: Script that provides the links to all input and
boundary condition files needed for simulations with ECHAM6. In the standard version,
the two scripts are identical but allow the user to apply different files for the reference
and test model, respectively.

test echam6 {test,reference} namelists.sh: These scripts generate the namelists for the
reference and test model separately. In the standard version, these two scripts are iden-
tical. They are useful if the introduction of a new submodel requires a namelist for the
test model that is different from the namelist used for the reference model.

test diff.sh: This script performs a comparison of all output files that are common to two
test simulations. It also gives a list of outputfiles that are not common to the two test
simulations. If there are no results written into an output file during the 12 time steps of
the test simulations, the comparison of the files with the cdo diff command leads to an
error message that the respective file structure is unsupported.

2.6.1.3 Usage

The scripts should be copied into a directory that is different form the original ECHAM6 directory
so that you can savely change them without overwriting the original. The files ∗.dat must
not be changed but contain values of “global” variables to all scripts. They are described
in section 2.6.1.2. The variables that have to be modified in test echam6.sh are listed in
table 2.49. Note that the revision specific path of the ECHAM6 model will be automatically
composed as ${REF DIR}/${REF BRANCH} rev${REF REVISION} for the reference model and as
${TEST DIR}/${TEST BRANCH} rev${TEST REVISION} for the test model, respectively. Inside
these directories, the echam model sources are expected to be in a revision independent directory
${REF BRANCH} and ${TEST BRANCH}, respectively. The simulation results will be in directories
${REF ODIR}/0000nrev${REF REVISION} and ${TEST ODIR}/0000nrev${TEST REVISION} for
the reference and test model, respectively. The number n is the number of the experiment.
If in such a directory, an outputfile ∗.err exists, the test tool assumes that the simulation
already exists and does not perform a new simulation. The results are not removed once a test
is performed in order to avoid the repetition of the same test simulation over and over again
(e.g. for the reference model). If experiments have to be repeated, the corresponding directory
or at least the ∗.err file inside this directory has to be removed by hand.
The test is then started by typing ./test echam6.sh in the directory of the test scripts.
The test script test echam6.sh can be started by adding three arguments MODE TEST REVISION

REF REVISION giving the key word for the test mode, the revision number of the test model and
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the revision number of the reference model, respectively. It is possible to omit REF REVISION

or both TEST REVISION and REF REVISION.
The links to input and boundary condition data and the input namelists for
the model revisions can be modified for the reference and the test model in-
dividually by editing the scripts test echam6 {reference,test} links.sh and
test echam6 {reference,test} namelists.sh, respectively. This makes this collection
of test scripts rather flexible: It may be used even for models containing extensions of ECHAM6
like ECHAM6-HAM or ECHAM6-HAMMOZ.

Table 2.49: Variables of test echam6.sh that have to be modified by the user of the
test scripts. The variables are listed in the order of their appearance in test echam6.sh.
Note that the revision specific path of the ECHAM6 model will be automatically com-
posed as ${REF DIR}/${REF BRANCH} ${REF REVISION} for the reference model and as
${TEST DIR}/${TEST BRANCH} ${TEST REVISION} for the test model, respectively.

Variable Explanation
SCR DIR Absolute path to diretory where test scripts are located.
OUTFILETYPE File type of output files. Set to 1 for GRIB format out-

put files and to 2 for netcdf output files. It is recom-
mended to test ECHAM6 with both output formats.

FORTRANCOMPILER If a module has to be loaded in order to use the cor-
rect fortran compiler version, give the fortran compiler
module here.

CCOMPILER If a module has to be loaded in order to use the correct
C compiler version, give the C compiler module here.

MPI MODULE If a module has to be loaded in order to use the Message
Passing Interface (MPI) runtime environment, specify
the module here.

MPIRUN command specification to run a program using MPI.
When running, the script will replace %n and %x by the
number of processes and the name of the executable,
respectively.

TEST DIR, REF DIR Absolute base path to directory containing model ver-
sions of test and reference model, respectively. Even if
the model source code is loaded from svn, this directory
has to exist.

TEST BRANCH, REF BRANCH name of branch of test and reference model in the re-
vision control system svn a revision of which has to be
tested, respectively.

TEST REVISION, REF REVISION revision number of test and reference model revision,
respectively.

TEST SVN, REF SVN URL address of test and reference model branch in svn
system, respectively. Can be omitted if model source
code is on local disk.

TEST ODIR, REF ODIR Absolute path where test scripts can open directories
for simulation results of test and reference model, re-
spectively. This directory has to exist.

table continued on next page
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Table 2.49: test echam6.sh — continued

LCOMP LCOMP=.true. forces compilation, with LCOMP=.false.

compilation is done only if executable is not existing.
MODE One of compile, single, debug, parallel,

nproma, rerun, update, submodeloff,
parallelnproma, parallelnpromarerun,
parallelnpromarerunsubmodeloff, all in order
to perform the corresponding tests.

If some step or test was not successful, more information about the possible error
is given in the protocol files that are written for each step. If the model was
checked out from the svn system, there is a protocol file checkout.log of the check-
out procedure in ${REF DIR}/${REF BRANCH} ${REF REVISION} for the reference model and
${TEST DIR}/${TEST BRANCH} ${TEST REVISION} for the test model, respectively. The con-
figure procedure and compilation is protocolled inside the ${BRANCH} directory of the afore-
mentioned paths in the files config.log and compile.log, respectively. Information about
each simulation can be found inside the directories ${REF ODIR}/0000nrev${REF REVISION}
and ${TEST ODIR0000nrev${TEST REVISION} with n being the number of the test case in-
dicated during the test run procedure on the screen, respectively. In these directories,
the standard and standard error output of the ECHAM6 program can be found in the
0000nrev${REF REVISION}.{log,err} and the 0000nrev${TEST REVISION}.{log,err} files,
respectively. The detailed result of the cdo comparison for each output file is also in these
output directories in respective files diff∗.dat. On the screen, only the most important steps
and results are displayed. A certain test is successfully passed if the comparison for each file
results in the message “0 of r records differ” where r is the number of records.

2.6.2 Automatic generation of run scripts for ECHAM6

The mkexp tool allows to automatically generate run scripts for ECHAM6 experiments. It uses a
set of experiment templates to generate these scripts.
To set up an experiment, you have to write a simple configuration file containing experiment
specific information like an experiment type to choose the appropriate templates, and possibly
model settings that override the default set of options. All information needed to run ECHAM6 is
then written to the run scripts and may be adjusted as needed for more specialized experiments.
By default, templates and examples for AMIP and CMIP5’s SSTClim style experiments are
provided, for two spatial resolutions, LR and MR.

Some part of the input below is variable and marked by <angle brackets>. Re-
member to replace these markers by actual experiment name, project name, version
tag, etc. before trying any of the examples.

2.6.2.1 Re-create a reference experiment on blizzard.dkrz.de

After compiling ECHAM6 on blizzard.dkrz.de you may check the model output against the refer-
ence data provided for the release. To allow direct comparison of data, it is essential to load
the exact compiler version given in section 2.1 before compiling.

1. From the echam-<version_tag> directory (see section 2.1), change into the run directory,
load the Python environment and set up the reference experiment:
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cd run

module add PYTHON

../util/mkexp/mkexp examples/amiptest.config

This creates directories for run scripts and output data, and prints their names. It also
prints the ’data directory’ needed in step 4.

2. Change to the script directory created by step 1, and submit your experiment amiptest
to the execution queue:

cd ../experiments/amiptest/scripts

llsubmit amiptest.run_start

3. To check if your experiment is running, you may use:

llqdetail

The Status column shows e.g. I for waiting (Idle), R for Running, or NQ for Not Queued.
The latter may happen if a user submits too many jobs (current limit is 10). If a run
stops due to errors, you will get a notification by email.

4. When the experiment has finished, it will disappear from the llqdetail list. Now go to
the data directory as printed in step 1:

cd <data_directory>

Check your output files against the reference data listed in https://code.zmaw.de/

projects/echam/wiki/ECHAM6_reference_experiments using cdo diff.

2.6.2.2 Getting started: create experiment setups

This section gives instructions for three different computer systems that are used at the Max
Planck Institute for Meteorology: blizzard.dkrz.de, thunder, and CIS desktops.
For any system, start from the directory where you have placed the ECHAM6 source code - as
described in section 2.1 - and change into the run directory:

cd run

By convention, experiments are named using a three-letter acronym plus a unique 4-digit experi-
ment number (e.g. jus0001). For Max Planck Institute for Meteorology users, acronyms are de-
fined in https://code.zmaw.de/projects/mpi-intern/wiki/List_of_Experimenter_IDs.

Roadmap for blizzard.dkrz.de

1. Make sure that the Python environment is loaded:

module add PYTHON

2. Create a copy of the amiptest.config example:

cp examples/amiptest.config <experiment_name>.config

3. Edit this file and complete the configuration as described in 2.6.2.5.

https://code.zmaw.de/projects/echam/wiki/ECHAM6_reference_experiments
https://code.zmaw.de/projects/echam/wiki/ECHAM6_reference_experiments
https://code.zmaw.de/projects/mpi-intern/wiki/List_of_Experimenter_IDs
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4. Create scripts and experiment directories:

../util/mkexp/mkexp <experiment_name>.config

This prints the ’script directory’ and ’data directory’ needed in later steps.

5. Change to the script directory written by the previous step:

cd <script_directory>

6. Submit the first experiment job (see 2.6.2.3 for the different options):

llsubmit <experiment_name>.run_start ### or <experiment_name>.run_init

7. To check the status of your jobs, use one of

llqdetail

llq -u $USER

Roadmap for thunder

1. Make sure that the Python and MPI environments are loaded:

module add python mvapich2/1.9b-static-intel12

2. Create a copy of the amiptest.config example:

cp examples/amiptest.config <experiment_name>.config

3. Edit this file and complete the configuration as described in 2.6.2.5.

4. Create scripts and experiment directories:

../util/mkexp/mkexp <experiment_name>.config

This prints the ’script directory’ and ’data directory’ needed in later steps.

5. Change to the script directory written by the previous step:

cd <script_directory>

6. Submit the first experiment job (see 2.6.2.3 for the different options):

sbatch <experiment_name>.run_start ### or <experiment_name>.run_init

7. To check the status of your jobs, use:

squeue -u $USER ### Add -l for more details
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Roadmap for CIS desktops

1. Make sure that the Python and MPI environments are loaded:

module add python mpich2

2. Create a copy of the amiptest.config example:

cp examples/amiptest.config <experiment_name>.config

3. Edit this file and complete the configuration as described in 2.6.2.5.

4. Create scripts and experiment directories:

../util/mkexp/mkexp <experiment_name>.config

This prints the ’script directory’ and ’data directory’ needed in later steps.

5. Change to the script directory written by the previous step:

cd <script_directory>

6. Run the first experiment job in background (see 2.6.2.3 for the different options):

( ./<experiment_name>.run_start & ) ### or <experiment_name>.run_init

7. To check the status of your jobs, use:

ps -fu $USER

2.6.2.3 Description of generated scripts

After running mkexp, the script directory contains these files:

README

contains the experiment description you entered as comment for the config file

<experiment name>.run start (submit to start from another experiment)
Restart script. Provides restart files from a previous experiment, and calls
<experiment name>.run for the first model year.

<experiment name>.run init (submit to run from initial conditions)
Initialization script. Performs an initial run for the first model year. Calls
<experiment name>.job* for post-processing, and <experiment name>.run for subse-
quent model years.

<experiment name>.run

Run script, called by <experiment name>.run start or <experiment name>.run init.
Calls <experiment name>.job* for post-processing, and itself for subsequent model years.

<experiment name>.job1

Packs model restart files into an archive file. Called by <experiment name>.run and
<experiment name>.run init.
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<experiment name>.job2

Post-processing of model output files. This creates the so-called ATM, BOT, and LOG
files used for ECHAM6 standard visualization. Called by <experiment name>.run and
<experiment name>.run init.

<experiment name>.job3

Concatenates model output files by year. Files are moved to the data directory if this is
different from the model working directory. Called by <experiment name>.job2.

<experiment name>.plot, <experiment name>.plot diff

Create plots and tables for evaluation of results. See section 2.7.0.3 for details. These
files are not run automatically.

2.6.2.4 Model output and log files

All jobs redirect their standard output and error to log files,
<experiment_name>_run*_<process_number>.log, in the script directory.
Output data files are written to the data directory as printed in step 4 above.

Due to incompatible handling of return codes, thunder complains even if the run
job completes successfully. The message:

==========================================================

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= EXIT CODE: 127

= CLEANING UP REMAINING PROCESSES

= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

==========================================================

may safely be ignored.

2.6.2.5 Example configuration details

The examples sub-directory currently contains only one experiment configuration,
amiptest.config. It performs an AMIP type simulation with the LR model for one year,
used for checking the model against reference data (see 2.6.2.1 above). Since ECHAM6 6.2, by
default only monthly mean output is created, without the formerly used 6-hourly data. The
selection of variables reflects the standard selection that goes into the ATM, BOT and LOG
files
This configuration contains some basic settings that you will need for most of your own exper-
iments:

1. The header comment text (starting with #) will be used as experiment description. When
writing your own files, take care to describe important characteristics of your experiment
here.

2. The name of the configuration file determines the experiment identifier. For
jus0001.config the experiment identifier is jus0001. Setting EXP_ID overrides the file
name:

EXP_ID = jus0001 ### ID is ’jus0001’, regardless of file name
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Make sure to choose a unique identifier for each experiment.

3. The experiment type EXP TYPE may be set to one of the standard types which define the
AMIP and SSTClimatology atmosphere model experiments, with the LR or MR model,
respectively (see table 2.6.2.7):

amip-LR

amip-MR

sstClim-LR

sstClim-MR

4. ENVIRONMENT defines the compute host settings. May currently be set to blizzard,
thunder, or DEFAULT (for CIS desktops).

5. For running your experiment on thunder, compute and disk accounting must be set to
your project’s name. On blizzard.dkrz.de this may also be used; if unset it defaults to
your standard project as set in $HOME/.acct:

ACCOUNT = <project_name>

6. Set the model sub-directory:

MODEL_SUBDIR = echam-<version_tag>

Model source and binaries, experiment scripts, working files, and post-processed data
may reside in different parts of the file system. By default, in each of these locations a
subdirectory MODEL SUBDIR is expected for the model files, or will be created otherwise.

The standard locations depend on your host environment; they’re usually
one of $HOME, /work/<project_name>/$USER, /scratch/<user_prefix>/$USER, or
/scratch/mpi/<project_name>/$USER, where HOME and USER refer to the UNIX stan-
dard environment variables.

For details, refer to section 2.6.2.6.

7. The [namelists] section contains all namelist settings, with subsections for each namelist
file name, e.g. [[namelist.echam]]. Namelist groups are set with sub-subsections like
[[[runctl]]]. Use lower case for namelist groups and their variables. See section 2.3
for details.

2.6.2.6 Customization of experiment setups

Using different directories mkexp may store model code, scripts, working files, and output
data in different directories. Though they all may be set manually, most of the time you will only
want to change the base directories, e.g. from /work to /scratch when using blizzard.dkrz.de
(see 2.6.2.8). For this, there is a number of variables that allows using the same structure
within all four directories. They are pre-set as:

MODEL_DIR = $MODEL_ROOT/$MODEL_SUBDIR

SCRIPT_DIR = $SCRIPT_ROOT/$MODEL_SUBDIR/$EXPERIMENTS_SUBDIR/$EXP_ID/

$SCRIPTS_SUBDIR

DATA_DIR = $DATA_ROOT/$MODEL_SUBDIR/$EXPERIMENTS_SUBDIR/$EXP_ID/$DATA_SUBDIR

WORK_DIR = $WORK_ROOT/$MODEL_SUBDIR/$EXPERIMENTS_SUBDIR/$EXP_ID/$WORK_SUBDIR



86 CHAPTER 2. USER GUIDE

The default settings are:

MODEL_ROOT = /scratch/mpi/$ACCOUNT/$USER for thunder,

$HOME for blizzard and others

SCRIPT_ROOT = $MODEL_ROOT

DATA_ROOT = /work/$ACCOUNT/$USER for blizzard,

/scratch/mpi/$ACCOUNT/$USER for thunder, and

$MODEL_ROOT for others

WORK_ROOT = $SCRATCH for blizzard,

$DATA_ROOT for thunder and others

MODEL_SUBDIR = echam-<version_tag>

EXPERIMENTS_SUBDIR = experiments

WORK_SUBDIR = ### empty string

Sub-directories may be omitted by setting them to an empty string (see WORK SUBDIR). HOME and
USER refer to the UNIX standard environment variables, and may be used in the configuration
file like any other variable.

Change global experiment settings Besides directory definitions, the top section of a
configuration may contain more pre-defined variables controlling the experiment. The examples
below show their names and respective default values.

ECHAM EXE = echam

Name of model executable

POST FILETAG = echamm

Name of output stream for post-processing

PLOT START YEAR

PLOT END YEAR

Years covered by the plot scripts; values are given as integers

PARENT EXP ID

Identifier of experiment from which restart files are taken

Change job resource settings Variables defining job resources go into section:

[jobs]

[[<job_id>]]

where <job id> may be a comma separated list of job identifiers, e.g. run, run start,

run init.

time limit

Maximum run time for the given jobs; value is given as string (hh:mm:ss)

nodes

tasks per node

threads per task

Process distribution on the compute host; values are given as integers
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tasks

Usually the number of processes is computed as nodes × tasks per node. For testing
reasons or over-committing, this number may also be set explicitly.

Change namelist settings Within the [namelists] section you may modify any namelist
settings that are defined for ECHAM6.
For example, to enable writing of 6 hourly output as used for AMIP simulations, locate or
add the namelists/namelist.echam/runctl section and add the appropriate settings. In our
amiptest.config example this would look like:

[namelists]

[[namelist.echam]]

[[[runctl]]]

dt_stop = 1979, 12, 31, 23, 50, 00

# Additional settings to enable 6 hourly output

default_output = true

putdata = 6, hours, first, 0

Empty lines and text after # are treated as a comment and ignored.
To change the parallelization of ECHAM, use:

[[[parctl]]]

nproca = 16

nprocb = 8

[[[runctl]]]

nproma = 72

Note that in mkexp all namelist variables are lower-case. When setting the variables, quotes
around strings and periods around truth values may be omitted. As in Fortran namelists, truth
values may also be set using t or f. Lists of values use comma as separator.
Thus, to perform an initialisation run with a non-standard output interval and with explicit
stratosphere, use:

[[[runctl]]]

lresume = false

lmidatm = t

putdata = 1, days, last, 0

which will then translate into the Fortran namelist:

&runctl

lresume = .false.

lmidatm = .true.

putdata = 1, ’days’, ’last’, 0

/
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mkexp currently does not impose any restrictions on namelist file names or group names. When
you need to use additional namelist files or groups, you may directly set them in the configu-
ration file, without any further programming.
Some namelist groups like mvstreamctl may be used repeatedly. For each group, a unique
identifier must be added to the group name, separated from the group name by at least one
space character:

[[[mvstreamctl spm]]]

...

[[[mvstreamctl glm]]]

...

[[[mvstreamctl g3bm]]]

...

Suppress standard namelist groups Sometimes you need to switch off optional namelist
groups that are defined by default. For instance, to remove all mvstreamctl output from
amip-LR, use:

[[namelist.echam]]

remove = mvstreamctl spm, mvstreamctl glm, mvstreamctl g3bm

or:

[[namelist.echam]]

remove = mvstreamctl *m

The latter disables all namelist groups that begin with ’mvstreamctl ’ and end in ’m’. Note
that the remove list is applied to all groups in namelist.echam, so use with care.

Note that when removing all mvstreamctl output, you need to configure postpro-
cessing to use 6h output by adding

POST FILETAG = echam

to the top section of your configuration. When starting from a restart file, you also
have to give the correct parent experiment, e.g.::

PARENT EXP ID = mbe0495

Special expressions mkexp supports the usual arithmetic expressions in the config file:

hours = 6

seconds = eval($hours * 3600)

evaluates to

hours = 6

seconds = 21600

Date strings – as used in many tools, e.g. cdo – may be split into a date list as used in namelists
for ECHAM6:
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date = 2013-12-11 12:34:56

date_list = split_date($date)

is equivalent to

date = 2013-12-11 12:34:56

date_list = 2013, 12, 11, 12, 34, 56

2.6.2.7 Extending the standard configuration

Standard experiment types Standard experiment setups are stored in the
standard experiments sub-directory. The experiment type defines a certain kind of
experiment, e.g. amip or sstClim, and an experiment quality, e.g. LR or MR.
All experiments of the same kind share one set of template files, kind.*.tmpl, that define the
basic work flow of the experiment.
For each experiment type kind-quality there is a file kind-quality.config with the set-
tings needed for this type of experiment. There may be different qualities for one experi-
ment kind, allowing to e.g. run the same experiment in different resolutions. In this case
kind-quality1.config and kind-quality2.config will mainly differ in the model resolution
settings.
The currently supported experiment types are:

kind quality description

amip
LR T63L47, prescribed AMIP SST and sea-ice
MR T63L95

sstClim
LR T63L47, prescribed climatological SST
MR T63L95

Standard host environments Host environments are stored in the
standard environments sub-directory. Currently supported hosts are blizzard and
thunder. The DEFAULT settings are for CIS desktops.

The corresponding .config files contain mainly settings for job queuing, directory structure
and MPI environment. The .tmpl files contain specific code for queuing and submitting.

2.6.2.8 Directory structure and file systems on blizzard.dkrz.de

The supercomputer platform blizzard.dkrz.de provides a number of file systems for different
purposes.

1. The $HOME file system (located in /pf) has a quota per user (8GB) and provides regular
backups. This file system is good for holding the source code of the echam model and the
run scripts that are used to perform a computer experiment.

2. The $SCRATCH file system (located in /scratch) has very fast I/O but data will be
deleted automatically after a system-defined period (currently 14 days). There is no
backup available. This file system is good for the primary output from a model that will
be treated by some postprocessing immediately after the run. By default, it is not used
by the automatically generated run scripts mentioned above.
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3. The /work/{PROJECT} file system that also has fast I/O possibilities. There is no backup
available, but data are not deleted automatically. There is a quota per project and not
per user. Reasonable use of this file system requires the coordination of your work with
the other members of this project. Although data are not automatically deleted, it is not
an archive. It is meant for frequently accessed data only.

4. There are two kinds of archive systems: /hpss/arch and /hpss/doku, both accessible by
pftp. Be careful to move your results into the archive as soon as you do not work with
them regularly.

2.6.3 Runs with parallel I/O

Runs with parallel I/O need a slight modification of the standard run scripts. An additional
node should be reserved for output, and nprocio set to 32 on blizzard.dkrz.de, or to 16 on
thunder. On blizzard.dkrz.de, you need to adjust the total number of tasks accordingly. Thus,
the changes in your .config file are the following:

[[[parctl]]]

...

nprocio = 32 ### 16 on thunder

iomode = 2 ### or 1 on thunder

...

[jobs]

[[run]]

nodes = 5

tasks = 288 ### nproca * nprocb + nprocio; only for blizzard!

The order of the variables in the output files can vary from file to file. If comparisons between
outputfiles shall be made, the command

cdo sortcode <ifile > <ofile >

has to be applied to every output file before the “diff” command is used.

2.7 Postprocessing

The ECHAM6 output is not directly suitable for visualization since some of the output fields are
in the spectral space (3d–temperature, vorticity, divergence and the logarithm of the surface
pressure). Furthermore, monthly or yearly mean values are more suitable for a first analysis of a
simulation than instantaneous values at a certain time step. There is a standard postprocessing
tool with which standard plots can be generated. This postprocessing tool also produces tables
of key quantities. The postprocessing consists of two steps: (1) preparation of the ECHAM6

output data, (2) generation of the plots and tables.

2.7.0.1 Software requirements

The postprocessing scripts require the installation of the so–called “afterburner” that performs
the transformation of spectral variables into grid point space and the interpolation to pressure
levels, the installation of the cdo climate data operator package for mean value calculations and
general manipulation of the data, the installation of the ncl NCAR graphics tool to generate the
plots, and of the LATEX program package in order to arrange the viewgraphs in one document.
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2.7.0.2 Preparation of the ECHAM6 output data

In general, <experiment name>.job2 processes the raw ECHAM6 output such that it is suited
for the postprocessing tool (see section 2.6.2). If <experiment name>.job2 was not applied,
the output data of an ECHAM6 simulation can be prepared for the postprocessing tool by the
use of the after.sh script. The prerequisite is to have a simulation that was conducted over a
time period of at least one complete year. The output has to be stored in monthly files. These
files can contain either monthly mean values or (mean) values over smaller time intervals. It is
assumed that the arithmetic mean of the output variables over the time steps in these monthly
files is a good estimate of the monthly mean value. Several variables have to be modified by
the user in the after.sh script (see Tab. 2.50).

Table 2.50: Variables of after.sh in alphabetical order
(e.g. in /pool/data/ECHAM6/post/quickplots/ncl/)

Variable Explanation
after Location and name of the executable of the afterburner, e.g.:

/client/bin/after

cdo Location and name of the executable of the climate data operators,
e.g.: cdo if no search path is needed

datdir Absolute path to the folder in which the original ECHAM6 simulation
output files are stored

exp Experiment name as defined in the variable out expname of the
runctl namelist (see Tab. 2.17)

filename suffix The extension of the monthly ECHAM6 (standard) output files
after the number of the months (including leading dots), e.g.:
.01 echam.nc. The output files can be in either GRIB format (no
extension) or netcdf format (including the extension .nc).

first year First year of simulation data
last year Last year of simulation data
out format should be set to 1 for GRIB output format of after.sh (standard)
workdir Absolute path to which the output files of after.sh are written

The output files contain monthly mean values over all simulated years as given by the
first year and last year variable. There are 12 output files for the 3–d variables with names
ATM ${exp} ${first year}-${last year} MMM with MMM describing the month and 12 output
files for the 2–d surface variables with names BOT ${exp} ${first year}-${last year} MMM.
These files are the input to the program that actually generates the tables and view graphs.

2.7.0.3 Generation of plots and tables

The plots and tables are generated by the script <experiment name>.plot (in the script di-
rectory, see section 2.6.2) in the case of a comparison of one model simulation with era40 data,
or by the script <experiment name>.plot diff in the case of the comparison of two different
experiments. Again, some variables have to be set by the user directly in the scripts. In the
case of the script <experiment name>.plot the variables are listed in Tab. 2.51, in the case of
<experiment name>.plot diff, the variables are listed in Tab. 2.52.
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Table 2.51: Variables of <experiment name>.plot in alphabetical order
(e.g. in echam-<tag number>/experiments/<experiment name>/scripts/)

Variable Explanation
ATM = 1 if viewgraphs of atmosphere fields are desired, = 0 otherwise
atm RES Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT = 1 if viewgraphs of surface fields are desired, = 0 otherwise
COMMENT Any comment that describes your experiment (will appear on the plots)
EXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.17)
LEV Number of levels
oce RES Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG only if LOG ∗ files exist, currently not implemented in after.sh

LONG = 1 prints all bottom codes, = 0 prints only a selection of codes (4, 97, 142,
143, 150, 164, 167, 178, 179, 210, 211, 230, 231, 191, 192)

NAME name of data files (without the ATM , BOT , or LOG prefix). Defaults to
${EXP}_${YY1}-${YY2}_${TYP}

PRINTER name of black and white printer = 0 if printing is not desired (results will be
shown on screen only). CAUTION: If the printer PRINTER exists, printing
is automatic without asking the user again!

PRINTERC name of color printer, = 0 if printing is not desired (results will be shown
on screen only). CAUTION: If the printer PRINTERC exists, printing is
automatic without asking the user again!

TAB = 1 if tables are desired, = 0 otherwise
TO select end of ERAinterim reference period (2008 or 1999)
TYP type of plots. There are 17 possible types: ANN: annual mean values (they

will be calculated from the monthly means by weighting with the length
of the respective months). Seasonal mean values for the seasons DJF (De-
cember, January, February), MAM (March, April, May), JJA (June, July,
August), SON (September, October, November). In the case of the seasonal
mean values, the length of the respective months is not taken into account
when the mean values over the corresponding three months are calculated.
One of the twelve months of a year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC). The seasonal and monthly (and also annual) mean
values are “climatological” mean values over possibly several years.

WORKDIR Path to the directory where the monthly means prepared by the after.sh

script are stored
YY1 First simulated year
YY2 Last simulated year

Table 2.52: Variables of <experiment name>.plot diff in alphabetical order for comparison
of simulation 1 with simulation 2
(e.g. in echam-<tag number>/experiments/<experiment name>/scripts/

Variable Explanation

table continued on next page
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Table 2.52: <experiment name>.plot diff — continued

ATM = 1 if viewgraphs of atmosphere fields are desired, = 0 otherwise
atm RES Spectral resolution of the model, e.g. 31 for the T31 spectral resolution
BOT = 1 if viewgraphs of surface fields are desired, = 0 otherwise
COMMENT Any comment that describes your experiment (will appear on the plots)
AEXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.17) for simulation 1
ANAME name of data files for simulation 1. Defaults to

${AEXP}_${AYY1}-${AYY2}_${TYP}

AYY1 First simulated year of simulation 1
AYY2 Last simulated year of simulation 1
BEXP Experiment name as defined in the variable out expname of the runctl

namelist (see Tab. 2.17) for simulation 2
BNAME name of data files for simulation 1. Defaults to

${BEXP}_${BYY1}-${BYY2}_${TYP}

BYY1 First simulated year of simulation 2
BYY2 Last simulated year of simulation 2
LEV Number of levels
oce RES Resolution of the ocean, e.g. GR30 for the GROB 30 resolution.
LOG only if LOG ∗ files exist, currently not implemented in after.sh

PRINTER name of black and white printer, = 0 if printing is not desired (results will be
shown on screen only). CAUTION: If the printer PRINTER exists, printing
is automatic without asking the user again!

PRINTERC name of color printer, = 0 if printing is not desired (results will be shown
on screen only). CAUTION: If the printer PRINTERC exists, printing is
automatic without asking the user again!

TAB = 1 if tables are desired, = 0 otherwise
TYP type of plots. There are 17 possible types: ANN: annual mean values (they

will be calculated from the monthly means by weighting with the length
of the respective months). Seasonal mean values for the seasons DJF (De-
cember, January, February), MAM (March, April, May), JJA (June, July,
August), SON (September, October, November). In the case of the seasonal
mean values, the length of the respective months is not taken into account
when the mean values over the corresponding three months are calculated.
One of the twelve months of a year (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC). The seasonal and monthly (and also annual) mean
values are “climatological” mean values over possibly several years.

WORKDIR Path to the directory where the monthly means prepared by the after.sh

script are stored

The results are stored in several files in the directory ${WORKDIR} ${TYP}. The tables
are in the files tabelle ${EXP} ${YY1}-${YY2} ${TYP}[.ps] in either ASCII or postscript
(ending .ps) format. The viewgraphs are stored in the files ATM ${TYP} ${EXP}.[tex,ps],
ATMlola ${TYP} ${EXP}.[tex,ps], and BOT ${TYP} ${EXP}.[tex,ps]. The LATEX files ∗.tex
combine several encapsulated postscript format viewgraphs in one document.
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2.8 Special model configurations

2.8.1 Single column model (SCM)

ECHAM6 is a general circulation model that simulates the transport of air masses, energy, and
trace gases like water vapour inside these air masses by advection, convection, and small scale
turbulence (eddies) represented by diffusion equations. Furthermore, all relevant physics like
radiation, cloud and precipitation formation, and surface processes are included. In some
cases, it is difficult to separate local effects from large scale dynamics, e.g. the direct influence
of radiation on cloud formation may be obscured by advection of energy from neighbouring
columns. In these cases, the analysis of physics processes in one single isolated column of
the model can shed light on the mutual relationships of these processes. The analysis of the
behaviour of model physics in one column can help us to develop new parameterisations and
is the natural test bed for physics parameterisations. Furthermore, a single column may be
considered as a very primitive model of the atmosphere of the earth represented by the processes
in one single “average” column. It may be instructive to investigate extreme scenarios like a
very hot climate and the behaviour of the physics implemented in ECHAM6 under such conditions
in a “single column version” of ECHAM6.

2.8.1.1 Initial conditions and forcing data for the single column model

Similar to a general circulation model, the single column model needs initial conditions as
starting point of time integration. Furthermore, it is possible to relax the trajectory of certain
variables towards a given trajectory of these variables or to prescribe tendencies for certain
variables. All input data i.e. initial conditions and externally prescribed trajectory and tendency
data are read from one single “forcing” file the name of which can be set in the columnctl

namelist file.
The geographical location of the column on the globe is given by its geographical longitude
and latitude described by the variables lon, lat in the forcing file. The single column model
reads the longitude and latitude from this file, they cannot be set in the namelist. Since the
single column model applies the 2d land sea mask and surface properties to the geographical
location of the column, the surface properties are implicitly determined by the longitude and
latitude of the column. Furthermore, all geographically dependent quantities like the diurnal
cycle, solar irradiation, greenhouse gas or aerosol mixing ratios, and sea surface temperature are
automatically calculated for this special geographical location or extracted from the respective
ECHAM6 input files.
Examples for forcing files can be found in /pool/data/ECHAM6/SCM.

2.8.1.1.1 Initial condition variables, trajectory variables, and tendency variables
in the forcing file The forcing file contains the variables listed in the first column of Tab. 2.53
describing at the same time the initial state and a trajectory of that state. The first time step
of these variables is used as the initial state. The first column gives the names under which the
variables appear in the forcing file. Furthermore, the corresponding tendencies of these variables
may also be present. The names of the corresponding tendencies are listed in the second column
of Tab. 2.53. All variables depend on the dimensions time [and levels] (time[,nlev]).
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Table 2.53: Variables describing the initial state, its trajectory, and tendencies in the forcing
file. As initial conditions, the first time step of the variables listed in the first column of the
table are used. The dimensions of each variable are reported in the third column of the table.
The mode in the last column of the table is marked “essential” if the variable must be present
as initial condition or optional if the variable can be set to zero at the initial state.

variable tendency dimension explanation mode
t ddt t (time,lev) temperature in the column essential
u ddt u (time,lev) wind in ~u direction essential
v ddt v (time,lev) wind in ~v direction essential
q ddt q (time,lev) specific humidity essential
ps — (time) surface pressure essential
xl ddt ql (time,lev) liquid water content optional
xi ddt qi (time,lev) ice water content optional

As mentioned above, it is possible to relax the state variables listed in Tab. 2.53 towards some
given trajectory. The relaxation is performed in the following way: Let X

(f)
t be the value of a

quantity X at time t to which the original prediction Xt of this quantity for time t has to be
relaxed. Let τ > 0 be a relaxation time and ∆t > 0 the integration time step. Then, the new
prediction X̃t at time t is given by:

X̃t :=

{
Xt + (X

(f)
t −Xt)

∆t
τ

for τ > ∆t

X
(f)
t for τ ≤ ∆t

(2.1)

In addition to the application of a trajectory until it ends, the same given trajectory may be
repetitively applied (“cycled”), e.g. a diurnal cycle may be applied over and over again. The
prescribed trajectory can be given at any regular time intervals and is interpolated to the actual
model time steps.
When one applies the relaxation method to certain variables, the trajectory of the respective
variables will be restricted to a neighbourhood of the given trajectory. There is a second method
to influence the trajectory: Instead of the internally produced tendencies (internal tendencies)
resulting from the physics processes in the respective column, tendencies originating from 3d
large scale dynamics (external tendencies) may be used or added to the internally produced
tendency. In general, if any external tendencies are provided, the single column model simply
replaces the internal tendencies by the external tendencies with one exeption: If vertical pressure
velocity or divergence is prescribed from an external data set (see Sec. 2.8.1.1.2), the external
tendencies of t, u, v, q, ql, qi are added to the internal tendencies. Tendencies can be used
for all variables of Tab. 2.53 except for the surface pressure. Since the mass of dry air in the
column is considered to be constant in time, the surface pressure can not change.
The various forcing options described above for the variables of Tab. 2.53 are coded in an
“option” array of three integer numbers {i∆, τ, icycle}. To each variable such an option array is
assigned. The first element i∆ is equal to 0 if no external tendencies are used for the respective
variable, i.e. the variable is only changed due to physics processes in the column. If i∆ = 1,
the external tendencies are applied according to the rule above. The second element τ of the
option array is the relaxation time in seconds. The third element icycle has to be set to 1 if
cycling of the external trajectory is desired, it has to be set to 0 if the trajectory is not cycled.
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2.8.1.1.2 Forcing by prescribing values of certain variables Up to now, we described
how to influence the trajectory of the state variables listed in Tab. 2.53. Furthermore, there is
a set of variables the values of which can or can not be externally prescribed. These variables
are listed in Tab. 2.54.

Table 2.54: Boundary condition variables

variable dimension explanation
ts (time) surface temperature
div (time,lev) divergence of the wind field
omega (time,lev) vertical pressure velocity

For the variables listed in Tab. 2.54 the “option” array consists of two elements {iset, icycle}.
If the first element iset = 0, the variable is allowed to change freely, whereas iset = 1 means
that the corresponding variable is set to the value given by the external data set. The second
element icycle determines whether (icycle = 1) or not (icycle = 0) cyclic interpolation with respect
to time of the external data set is required.

2.8.1.2 Namelist columnctl

The namelist is described in Sec. 2.3.1.3.
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test echam6.sh

test checkdirectories.sh

compile echam6.sh

test mode.sh

test echam6 run.sh

test echam6

{
reference

test

}
links.sh

link.sh

test echam6

{
reference

test

}
namelists.sh

mpirun.dat

test diff.sh

Figure 2.1: Flow chart of test scripts. The main script in the red box has to be modified by
the user. The scripts in the green boxes can be modified in order to use different model settings
than the standard ones for test or reference model, respectively. The script in the blue box
depends on the test mode and is one of mode=single, parallel, nproma, rerun, submodeloff,
parallelnproma, parallelnpromarerun, parallelnpromarerunsubmodelloff, update, all.
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Chapter 3

Technical Documentation

3.1 Parallelization

3.1.1 General description

The parallel version of ECHAM is based on a domain distribution approach, i.e. every processor
only handles a limited domain of the whole globe, and only keeps the respective part of the
data. In order to facilitate the distribution, the whole domain is divided into nproca times
nprocb domains with nproca being the number of divisions in north-south direction and nprocb

the number of divisions in east west direction. In order to achieve a good load balance in the
shortwave radiation (and chemical reaction) calculations, each processor treats two parts of the
globe, located opposite to each other. So half of the gridpoints of each processor will be on the
daytime and the other half on the nighttime side on the globe.

Parts of the calculations within ECHAM are performed in spectral space. For these calculations
the spectral coefficients are distributed over processors as well. In order to perform the Fourier
and Legendre transformations - which are global operations in gridpoint and spectral space as
well - two further data distributions are used, named Fourier and Legendre space. The data
distributions are sketched in Figure 3.1, a more detailed discription is given in Section 3.1.3.

Processor Grid (Na x Nb) Processor Grid (Na x Nb) Processor Grid (Na x Nb) Processor Grid (Na x Nb)

Set A Set A

Set B Set B Set B

Spectral SpaceLegendre SpaceFourier SpaceGrid Point Space

zz

z zλ

m

m m n

µ

µ

n

Figure 3.1: Data distribution

The data transpositions, i.e. the redistribution of data in order to perform the global Fourier
and Legendre transformations are performed just before and after these transformations. All
other calculations require almost no further communication (besides a few global sums) because
the data required for the operations is present on the respective processor. A recipe for writing
parallel routines is given in Section 3.1.2.

99
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3.1.2 Recipe for writing or modifying parallel routines

3.1.2.1 Physical parameterizations

The physical parameterization routines (called from the routines gpc or physc) work only on
one block of grid cells of consecutive longitudes. This block can be too short to accomodate
all grid cells of one latitude of it may combine grid cells of more than one latitude into one
block. The length of the block can be chosen arbitrarily and is called nproma. The loop over
the blocks is performed in a higher level routine (scan1) and the actual block length is passed
to the respective subroutines as kproma.
“Physics” computations at different model columns are generally independent from each other
and do not require any communication between processors. Furthermore most computations
do not depend on the absolute location on the globe. If these two conditions are fullfilled no
further action is required for the parallel model version and a physical parameterization routine
may remain unchanged. Loops over the grid cells in one block are performed by the following
statement:

DO i=1, kproma

...

END DO

Special care must be taken if:

1. The routines are not called within the loop over blocks.

In this case the number of longitudes and latitudes handled by the processor
can be accessed by reference to the components nglon and nglat of the variable
local decomposition in module mo decompose (cf. Section 3.1.3.2). A typical loop
over blocks and block elements is given below. dc%ngpblks and dc%nproma (dc%npromz)
are also used to specify the dimensions of local arrays.

use mo_decomposition, only: dc => local_decomposition

real(dp) :: xlocal (dc%nproma, dc%ngpblks) ! declare a local array

...

DO j=1, dc%ngpblks-1 ! loop over local block

DO i=1, dc%nproma ! loop over grid cells in block

...

xlocal (i,j) = 0._dp ! access a local array

...

END DO

END DO

DO i=1, dc%npromz

...

xlocal (i,dc%ngpblks) = 0._dp

...

END DO

2. An index to a global field is required or the absolute position on the globe must be known.

These conditions are met in the short-wave radiation part, where the zenith angle of the
sun must be calculated, or if the horizontal area covered by a column must be known, for
instance in budget calculations.
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Every processor handles two distinct parts of the domain on opposite sides of the globe.
For this reason the first dc%ngpblks/2 blocks are located on the northern hemisphere
whereas the remaining lines are located on the southern hemisphere. The local as well as
the global latitude generally runs from North to South, but some of the global arrays (for
instance Gaussian weights) are still stored in so called ping-pong order (with one latitude
line in the northern hemisphere being followed by the respective latitude line from the
southern hemisphere).

For routines called within gpc or physc the local latitude index jglat and the global ping-
pong index igprow are stored in the module variable nrow(2) in module mo control:

nrow(1) = igprow ! global ping pong index

nrow(2) = jlat ! local index north -> south

3. Global sums are required.

Global sums should be avoided, in order to prevent communication between processors.
In the case that global operations cannot be avoided, routines to derive global (or zonal)
sums may be found in module mo global op (cf. Section 3.1.6).

4. Dependencies between horizontal gridpoints exist.

Dependencies between horizontal gridpoints within the physical routines should be
avoided, in order to prevent communication between processors. If possible these cal-
culations should be done at locations in the program where suitable data transpositions
have already been performed or in dedicated routines (for instance in the semi–Lagrangian
transport routine).

5. Input and Output

Input and Output is addressed in Section 3.1.2.2

3.1.2.2 Input/Output

Two things must be considered when files are read or written:

1. In parallel mode, only one processor is allowed to perform I/O. This processor will also
be called I/O processor. The logical variable p parallel io (from mo mpi) has the value
.true. on the I/O processor only and has the value .false. on all other processors. In
single processor mode (indicated by a value .false. of p parallel) the data is merely
read or written.

2. The values of variables read by the I/O processor must be communicated to the other
processors. If all processors are supposed to receive the same information the broadcast
routine p bcast (from mo mpi) must be called. In case of two or three dimensional arrays
each processor only holds the information relevant for its subdomain. In this case the I/O
must be performed on a global variable (generally only allocated on the processor which
performs I/O) different from the local variable which finally is used for computations. In
order to communicate the data to processors in gridpoint space the routine scatter gp

from module mo transpose must be called. Similar routines exist in order to distribute
data in spectral space (scatter sp) or do gather the data from the other processors
(gather gp, gather sp). Generic interfaces are provided for the broadcast and gather or
scatter routines (cf. Section 3.1.4) for different data types and array dimensions.
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Below some examples are given. Note that generally I/O is not performed directly, but routines
are provided for reading and writing specific formats (Grib, Netcdf).

1. Read and broadcast some information

The broadcast routine requires p io as actual parameter in order to identify the processor
which sends the information, i.e. the processor which performs I/O.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_broadcast, p_io

IF (p_parallel) THEN

IF (p_parallel_io) THEN

READ x

ENDIF

CALL p_bcast (x, p_io)

ELSE

READ x

ENDIF

2. Read and scatter some information

In this example x is a 3 dimensional field (kbdim, levels, ngpblks, where kbdim is
the maximum length of block) which finally stores the local information on each proces-
sor. Information on the data distribution of all processors is provided in the variable
global decomposition and must be passed to the scatter and gather routines.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_io

USE mo_transpose, ONLY: scatter_gp

USE mo_decompose, ONLY: gl_dc => global_decomposition, &

dc => local_decomposition

REAL, POINTER :: tmp (:,:,:) ! global read buffer

REAL :: x (dc%nproma, dc%nlev, dc%ngpblks)

IF (p_parallel) THEN ! in parallel mode:

NULLIFY(tmp) ! nullify global array not used

IF(p_parallel_io) THEN

ALLOCATE (tmp(dc%nlon,dc%nlev,dc%nlat)) ! allocate global array used

READ x ! read information

ENDIF

CALL scatter_gp(tmp, x, gl_dc) ! scatter

IF (p_parallel_io) DEALLOCATE (tmp) ! deallocate global array

ELSE ! in single processor mode:

READ x ! merely read

ENDIF

3. Gather and write some information

This example is very similar to the previous one.

USE mo_mpi, ONLY: p_parallel, p_parallel_io, p_io

USE mo_transpose, ONLY: gather_gp

USE mo_decompose, ONLY: gl_dc => global_decomposition, &
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dc => local_decomposition

REAL, POINTER :: tmp (:,:,:) ! global read buffer

REAL :: x (dc% nglon, dc% nlev, dc% nglat)

IF (p_parallel) THEN ! in parallel mode:

NULLIFY(tmp) ! nullify global array not used

IF(p_parallel_io) THEN

ALLOCATE (tmp(dc%nproma,dc%nlev,dc%ngpblks)) ! allocate

!global array used

ENDIF

CALL gather_gp(tmp, x, gl_dc) ! gather

IF(p_parallel_io) THEN

WRITE x ! write information

DEALLOCATE (tmp) ! deallocate global array

ENDIF

ELSE ! in single processor mode:

WRITE x ! merely write

ENDIF

3.1.3 Decomposition (mo decompose)

The decomposition is handled by the module mo decompose which is described in this section.
The domain decomposition is performed by a call to the routine decompose with the following
parameters:

global dc

Derived decomposition table (output).

nlat, nlon, nlev

These parameters determine the size of the global domain: nlat is the number of latitudes
(which must be even), nlon is the number of longitudes and nlev is the number of levels.

nm, nn, nk

These parameters give the number of wavenumbers in spectral space. Currently only
triangular truncation is allowed with nm = nn = nk.

nproca, nprocb

Following the ideas of the Integrated Forecast System (IFS) of the European Centre of
Midium–Range Weather Forcast (ECMWF) the total domain is covered by nproca times
nprocb processors. In Gridpoint space the domain is divided into nprocb subdomains in
east-west direction and 2 times nproca subdomains in north-south directions. Details are
given below in the subsections of this paragraph.

The default decomposition may be modified by the following optional parameters:

norot

In order to improve load balancing in the shortwave radiation part half of the gridpoints
of each processor should be exposed to the sun whereas the other half should be located at
the nocturnal side of the globe. Thus each processor handles two subdomains on opposite
sides of the globe. Actually the two domains must consist of latitude rows with the same
absolute values of latitudes, but with opposite sign. The longitude values in the southern
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domain are rotated by 180 degree with respect to the corresponding gridpoints in the
northern domain. Setting this optional parameter to .true. the southern domain is not
rotated. If the code runs on one processor this results in a continuous global domain as
in the serial program version.

lfull m

Setting this optional parameter to .true. ensures that the decomposition in spectral
space does not spread wavenumbers with the same longitudinal wavenumber m over
different processors. This option is not recommended because it decreases load balance
in spectral space.

debug

Setting this optional parameter to .true. runs a second copy of the model using one
additional processor so that nproca × nprocb + 1 processors are required in this case.
Furthermore it is assumed that norot=.true. for this additional run so that the decom-
position corresponds with that of the original serial version.

The values of the variables of the two model copies are compared at certain breakpoints
and further tests for equality of corresponding variables can be inserted at any time of
program execution. This is the most rigorous test of the parallel version.

A value .true. of the logical module variable debug parallel indicates that the parallel
test mode is enabled.

Decomposition information is stored in the module variables global decomposition and
local decomposition of derived type pe decomposed. The elements of the array
global decomposition describe the decomposition for each processor. The scalar type
local decomposition holds the decomposition of the actual processor.
The data type pe decomposed described in the subsection below holds the decomposition in-
formation for a single processor.

3.1.3.1 Information on the whole model domain

The following components of data type pe decomposed have the same contents for all processors
of the model:

nlon: number of longitudes of the global domain.

nlat: number of latitudes of the global domain.

nlev: number of levels of the global domain.

nm: maximum wavenumber used. Only triangular truncation is supported.

The following components depend on nm:

nnp(m+1): number of spectral coefficients for each longitudinal wavenumber m, m = 0, nm

nmp(m+1): displacement of the first point of m-columns within the array storing the spectral
coefficients. Actually nmp(1)=0 and nmp(nm+2)= last index of the array storing the spec-
tral coefficients. The actual number of coefficiens is 2×nmp(nm+2) because 2 coefficients
are stored for each wavenumber.
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3.1.3.2 Information valid for all processes of a model instance

The following components of data type pe decomposed have the same contents for all processors
of each instance of the model:

nprocb: number of processors for the dimension that counts longitudes

nproca: number of processors for the dimension that counts latitudes

d nprocs: number of processors used in the model domain nproca× nprocb.

spe, epe: Index number of first and last processor which handles this model domain.

mapmesh(ib,ia): array mapping from a logical 2-d mesh to the processor index numbers
within the decomposition table global decomposition. ib = 1, nprocb; ia = 1, nproca.

3.1.3.3 General Local Information

The contents of the remaining components of data type pe decomposed is specific for each
processor.

pe: processor identifier. This number is used in the mpi send and receive routines.

set b: index of processor in the direction of logitudes. This number determines the location
within the array mapmesh. processors with ascending numbers handle subdomains with
increasing longitudes (i.e. from west to east).

set a: index of processor in the direction of latitudes. This number determines the location
within the array mapmesh. Processors with ascending numbers handle subdomains with
decreasing values of absolute latitudes (i.e. from the pole to the equator within each
hemisphere).

3.1.3.4 Grid space decomposition

In grid space longitudes and latitudes are spread over processors. Each processor handles all
levels of a model column.

nglat, nglon: number of latitudes and longitudes in grid space handled by this processor.

glats(1:2), glate(1:2): start and end values of global latitude indices.

glons(1:2), glone(1:2): start and end values of global of longitude indices. Each proces-
sor handles two subdomains located on opposite sides of the globe. The first elements
1:nglat/2 of array dimensions indexing latitudes correspond to global latitude indices
glats(1):glate(1). The last elements nglat/2+1:nglat correspond to global latitude
indices glats(2):glate(2). Both, local and global latitude indices run from north to
south. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond to
elements g(k, l), k = glons(1), glone(1), l = glats(1) : glate(1) of the respective global
array.

glat(1:nglat): global latitude index.

glon(1:nglon): offset to global longitude index. These components facilitate indexing of
global arrays. Elements e(i, j), i = 1 : nglon, j = 1 : nglat/2 of a local array correspond
to elements g(glat(i),+glon(i) + j) of the respective global array.
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3.1.3.5 Fourier space decomposition

In order to perform the Fourier transformation, the arrays are redistributed so that each pro-
cessor holds all longitudes or Fourier components. Latitudes are spread over processors as in
grid space. Additionally the levels are distributed.

nflat, nflev: number of latitudes and levels on this processor.

nflevp1: number of levels plus one on this processor. If global arrays hold nlev+1 elements
per column they require nflevp1 on this processor. nflevp1 is equal to nflev+1 if the
last level is handled by this processor, otherwise nflevp1 is equal to nflev.

flats(2), flate(2): start and end values of latitudes indices. As in grid space 2 subdomains
located on the northern and southern hemisphere are handled.

flevs, fleve: start and end values of levels. The elements e(k), k = 1, nflevp1 of a local
array correspond to elements g(l), l = flevs : fleve of the respective global array.

lfused: .true. if this processor is used in Fourier space.

3.1.3.6 Legendre space decomposition

In order to perform the Legendre transformation, the arrays are redistributed so that each
processor holds all latitudes or spectral coefficients for a given longitudinal wavenumber. Levels
are spread over processors as in Fourier space. Additionally the longitudinal wavenumbers are
distributed.

Row of PEs with same set a:

nlm: number of local longitudinal wave numbers m handled by this processor.

lm(1:nlm): actual longitudinal wave numbers handled by this processor.

lnsp: number of complex spectral coefficients handled by this processor.

nlmp(1:nlm): displacement of the first coefficient of columns (with same longitudinal wave
number) within a globally indexed array (as described by components nm, nnp, nmp).

nlnp(1:nlm): number of points on each column with same longitudinal wave number m.

nlnm0: number of coefficients with longitudinal wave number m=0 on this processor.

Column of PEs with same set b:

nllev, nllevp1: number of levels (+1) handled by this processor as in Fourier space.

llevs, lleve: start and end values of level indices as in Fourier space.
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3.1.3.7 Spectral space decomposition

For spectral computations the arrays are redistributed so that each processor holds all levels
for a given spectral coefficient. Longitudinal wavenumbers are spread over processors as in
Legendre space. Remaining spectral coefficients are spread over processors.

snsp, snsp2: number of spectral coefficients handled by this processor and number of coef-
ficients multiplied by 2.

ssps, sspe: first and last spectral coefficient with respect to the ordering in Legendre space.

lfirstc: true, if first global coefficient (m=0,n=0) resides on this processor.

ifirstc: location of first global coefficient on this processor.

np1(1:snsp): value of (n+1) for all coefficients of this processor.

mymsp(1:snsp): value of m for all coefficients of this processor.

nns: number of different n-values for this processor.

nindex(1:nns): values of (n+1) different n-values for this processor.

nsm: number of longitudinal wavenumbers per processor.

sm (1:nsm): actual longitudinal wave numbers handled by this processor.

snnp(1:nsm): number of n coefficients per longitudinal wave number m.

snn0(1:nsm): first coefficient n for a given m.

nsnm0: number of coefficients with m=0 on this processor.

3.1.4 Gather, Scatter and Low Level Transposition Routines
(mo transpose)

The module mo transpose holds the routines to scatter global fields (after input) among the
processors, to gather distributed fields from the processors (for output and debug purposes)
and to perform the transpositions between the different decompositions (grid, Fourier, Legendre
and spectral space).

3.1.4.1 Gather and Scatter routines (gather xx, scatter xx)

Generic interfaces are defined for specific routines to act on arrays of different rank (for 3-D
atmospheric fields, 2-D surface fields, etc. ). Arrays of rank 4 are supported in order to handle
arrays allocated in memory buffer. The actual representation (2-D, 3-D) is derived from the
shape of the rank 4 arrays or rank 3 arrays.
All scatter and gather routines have a similar interface:

subroutine scatter xx (gl, lc, gl dc)

subroutine gather xx (gl, lc, gl dc, [source])
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The postfix xx is one of gp, ls, sa or sp and denotes the space to scatter/gather to/from.

The parameter gl is a pointer of rank 1 to 4 pointing to the global array. gl needs to be
allocated only on the processor which performs i/o.

The parameter lc is an array of the same rank as gl holding the distributed array.

The parameter gl dc holds the global decomposition table.

All scatter routines distribute a global array from the i/o processor to the decomposed arrays
of all processors, including itself.

The gather routines have an optional parameter source in order to gather fields from different
model copies run in parallel for debug purposes. source may have one of the following values:

-1: gather from all processors. If more than one model copy is run, the result depends on the
actual I/O processor within the global decomposition table.

0: gather from the i/o processor only. If more than one model copy is run this is the processor
which performs calculations on the whole model domain.

1: gather from all processors besides the I/O processor. If more than one model copy is run
these processors perform the parallel calculations on the distributed domain.

not present: The effect is the same as if source had the value of the variable
debug parallel in mo decompose.

The shape of the arrays gl may be one of the following:

scatter gp, gather gp: (grid space)

(nlon, nlev, ntrac, nlat) 3D tracer fields
(nlon, nlev, nlat, 1) 3D gridpoint field
(nlon, nlev, nlat)
(nlon, nlat, 1, 1) 2D surface field
(nlon, nlat, 1)
(nlon, nlat)

nlon, nlat are the number of longitudes and latitudes of the global field gl as specified by
the respective components of local decomposition. nlev, ntrac are arbitrary numbers
of vertical levels and tracers. If more longitudes are passed only nlon or nglon longitudes
are scattered/gathered.

scatter sp, gather sp: (spectral space)

(nlev, 2, nsp, 1) full spectral field
(nlev, 2, nsp)
(nlev, nnp1, 1, 1) spectral array with
(nlev, nnp1, 1) m=0 coefficients only
(nlev, nnp1) (zonal mean in grid space)

The global field gl has nsp spectral coefficients or nnp1 coefficients for the zonal wavenum-
ber m=0 only as specified by the respective components of local decomposition. The
corresponding decomposed field lc has snsp spectral coefficients or nsnm0 coefficients for
the zonal wavenumber m=0 only. nlev is an arbitrary number of vertical levels. The
second index is 2 because 2 coefficients are stored for each wavenumber.
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scatter sa, gather sa: (symmetric/assymetric Fourier components)

(nlev, 2, nm+1, nhgl) full Fourier transformed field
(nlev, nhgl, 1, 1) Fourier transformed field (m=0 only)
(nlev, nhgl) (zonal mean in grid space)

For reasons of computational efficiency, Legendre transformation is performed on symmet-
ric and asymmetric (with respect to the equator) fields seperately. The symmetric/asym-
metric Fourier components are input to the Legendre transform (output of the inverse
transform). Thus, the decomposition of these fields corresponds to Legendre space, i.e.
vertical levels and zonal wavenumbers are spread over processors.

The global field gl has nm+1 zonal wavenumbers and nlev or nlev+1 vertical levels as
specified by the respective components of local decomposition. The corresponding
decomposed field lc has nlm zonal wavenumbers and nllev or nllevp1 vertical levels.
nhgl=nlat/2 is half of the number of Gaussian latitudes. The second index of the full
fields is 2 because 2 coefficients are stored for each wavenumber.

scatter ls, gather ls: (Legendre space)

Scatter and gather routines to/from Legendre space are used for debugging purposes only.

(2*(nm+1), nlev, nlat, nvar) Fourier components, (gather routine only)
(nlev, 2, nsp) full spectral field
(nlev, nnp1) spectral field with m=0 only

Global Fourier transformed fields (in Legendre space distribution) have 2*(nm+1) spectral
coefficients and nlev or nlev+1 vertical levels as specified by the respective components
of local decomposition. Global spectral fields have nsp spectral wavenumbers or nnp1
coefficients for m=0 only. The corresponding decomposed field lc has nlm zonal wavenum-
bers or lnsp complex spectral coefficients and nllev or nllevp1 vertical levels. nlat is
the number of latitudes and nvar an arbitrary number of variables.

3.1.4.2 Transposition routines (tr xx yy)

The general interface of the transpose routines is:
subroutine tr xx yy (gl dc, sign, xxfields.., yyfields..)

TYPE (pe decomposed) :: gl dc decomposition table
INTEGER :: sign direction of transposition: 1: xx−>yy, -1: xx<−yy
REAL :: xxfields fields in xx-space
REAL :: yyfields fields in yy-space
With xx, yy being one of gp (gridpoint space), ls (Legendre space), or sp (spectral space).
The shape of the array arguments xxfields, yyfields depends on the data structure in the
respective spaces. The specific interfaces are as follows:

SUBROUTINE tr_gp_fs (gl_dc, sign, gp1, gp2, gp3, gp4, gp5, gp6, gp7,&

sf1, sf2, sf3, zm1, zm2, zm3, fs, fs0)

!

! transpose

! sign= 1 : grid point space -> Fourier space

! sign=-1 : grid point space <- Fourier space

!

!
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TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:gp>fs; -1:gp<fs

REAL ,INTENT(inout) :: gp1 (:,:,:) ! gridpoint space 3d

...

REAL ,INTENT(inout) :: gp7 (:,:,:) !

REAL ,OPTIONAL ,INTENT(inout) :: sf1 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: sf2 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: sf3 (:,:) ! gridpoint space 2d

REAL ,OPTIONAL ,INTENT(inout) :: zm1 (:,:) ! zonal mean

REAL ,OPTIONAL ,INTENT(inout) :: zm2 (:,:) ! zonal mean

REAL ,OPTIONAL ,INTENT(inout) :: zm3 (:,:) ! zonal mean

REAL ,INTENT(inout) :: fs (:,:,:,:) ! Fourier space

REAL ,OPTIONAL ,INTENT(inout) :: fs0 (:,:,:) ! zonal mean, Four.

SUBROUTINE tr_fs_ls (gl_dc, sign, fs, ls, fs0, ls0)

!

! transpose

! sign= 1 : Fourier space -> Legendre space

! sign=-1 : Fourier space <- Legendre space

!

TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:fs>ls; -1:gs<ls

REAL ,INTENT(inout) :: fs (:,:,:,:) ! fs

REAL ,INTENT(inout) :: ls (:,:,:,:) ! ls

REAL ,OPTIONAL ,INTENT(inout) :: fs0 (:,:,:) ! fs, zonal means

REAL ,OPTIONAL ,INTENT(inout) :: ls0 (:,:,:) ! ls, zonal means

SUBROUTINE tr_ls_sp (gl_dc, sign, ls1, sp1, ls2, sp2, ls3, sp3, ls0, sp0)

!

! transpose

! sign= 1 : Legendre space -> spectral space

! sign=-1 : Legendre space <- spectral space

!

TYPE (pe_decomposed) ,INTENT(in) :: gl_dc (:) ! decomposition

INTEGER ,INTENT(in) :: sign ! 1:ls&gtsp; -1:ls&ltsp

REAL ,INTENT(inout) :: ls1 (:,:,:) ! Legendre space

REAL ,INTENT(inout) :: sp1 (:,:,:) ! spectral space

...

REAL ,INTENT(inout) :: ls3 (:,:,:) ! Legendre space

REAL ,INTENT(inout) :: sp3 (:,:,:) ! spectral space

REAL ,OPTIONAL ,INTENT(inout) :: ls0 (:,:) ! Legendre (m=0 only)

REAL ,OPTIONAL ,INTENT(inout) :: sp0 (:,:) ! spectral (m=0 only)

3.1.5 High Level Transposition Routines (mo call trans)

The routines in module mo call trans gather the fields to be transposed from the respective
modules and pass them as actual parameters to the routines which finally perform the trans-
formations (defined in module mo transpose). If ECHAM is run in test mode, the correctness
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of the parallel implementation is tested by calling the respective routines for the ingoing and
outgoing parameters. Test routines are also provided for the content of some buffers.

The fields involved in the transformation and test routines are listed below.

subroutine spectral to legendre
Input : from module mo memory ls (Legendre space)
ld
ltp
lvo
lu0
Output : to module mo memory sp (spectral space)
sd
stp
svo
su0

subroutine legendre to fourier
Input : from module mo buffer fft (Legendre space)
fftl buffer for 2D and 3D fields
lbm0 buffer for zonal means (m=0)
Output : to module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)

subroutine fourier to gridpoint
Input : from module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)
Output : to module mo scan buffer (gridpoint space)
d scb
t scb
u scb
v scb
vo scb
dtm scb
dtl scb
alps scb
dalpsl scb
dalpsm scb
u0 scb
du0 scb
ul scb
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subroutine gridpoint to fourier
Input : from module mo scan buffer (gridpoint space)
rh scb
dm scb
vom scb
vol scb
u0 scb
du0 scb
ul scb
Input : from module mo memory g1a (gridpoint space)
alpsm1
dm1
tm1
vom1
Output : to module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)

subroutine fourier to legendre
Input : from module mo buffer fft (Fourier space)
fftz buffer for 2D and 3D fields
fbm0 buffer for zonal means (m=0)
Output : to module mo buffer fft (Legendre space)
fftl buffer for 2D and 3D fields
lbm0 buffer for zonal means (m=0)

subroutine legendre to spectral
Input : from module mo memory ls (Legendre space)
ld
ltp
lvo
lu0
Output : to module mo memory sp (spectral space)
sd
stp
svo
su0

subroutine test memory f (text)
Test : module mo memory f
f

subroutine test memory gp (text)

subroutine test scan buffer (gp, text)

subroutine test row buffer (j, text)

3.1.6 Global operations (mo global op)

In this module, subprograms are collected that perform global operations on 2–d and 3–d fields
like the calculation of global or zonal mean values. Any global operation needs communication



3.2. DATA STRUCTURES AND MEMORY USE 113

between the processors. Even if integrals are split into integrals over the domain that is present
on each processor and the summation over all processors, the global operation subroutines slow
down the ECHAM6 program the more the more processors are used in a simulation. For this
performance reason, it is highly recommended to reduce global operations to a strict minimum
in ECHAM6 and to perform such operations in the postprocessing step that can be performed in
parallel to a longer simulation.

3.2 Data structures and memory use

3.2.1 Output Streams and Memory Buffer

3.2.1.1 Functionality

The Output Stream interface maintains a list of output streams. Generally one ore more
streams are associated to an output file. Each stream has attributes specifying the file name,
file type, etc.. It further holds a linked list of Memory Buffer elements, of 2 to 4 dimensional
arrays and associated meta information.

3.2.1.2 Usage

First, a new output stream must be created by calling subroutine new stream. Afterwards
fields may be allocated by calling add stream element.

Create a new output stream

The access to the output stream interface is provided by module mo memory base :

USE mo_memory_base, ONLY: t_stream, &

new_stream, delete_stream, &

default_stream_setting, add_stream_element, &

get_stream_element, set_stream_element_info, &

memory_info, &

ABOVESUR2, ...

To create a new output stream the routine new stream has to be called:

TYPE (t_stream) ,pointer :: mystream

...

CALL new_stream (mystream ,’mystream’)

mystream is a pointer holding a reference to the output stream returned by subroutine
new stream. ’mystream’ is the identification name of the output stream.

By default, the output and rerun filenames are derived from the name of the output stream (here
’mystream’) by appending a respective suffix (here ’ mystream’) to the standard filenames.
The content of the output stream is written to the rerun file and to the output file. To change
the defaults, optional parameters may be provided (cf. section 3.2.1.3).
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Add a field to an output stream

To include items in the output stream mystream the routine add stream element has to be
called. A unique name must be given to identify the quantity and a pointer associated to the
field is returned. For example, to add a surface field a and an atmospheric field b with names
’A’ and ’B’, the following sequence of subroutine calls is required:

REAL, POINTER :: a (:,:)

REAL, POINTER :: b (:,:,:)

REAL, POINTER :: c (:,:)

...

CALL add_stream_element (mystream, ’A’ ,a )

CALL add_stream_element (mystream, ’B’ ,b )

By default suitable sizes are assumed for surface (2-d pointer a) or atmospheric fields (3-d
pointer b). To choose other sizes (e.g. spectral fields or a non-standard number of vertical
layers) optional parameters must be specified. The specification of the optional parameters is
given in section 3.2.1.4

A routine is available to associate a pointer (here c) with an item (here ’A’) already included
in the list (previously by another sub-model for example):

CALL get_stream_element (mystream, ’A’, c)

If stream element ’A’ has not been created beforehand, a null pointer is returned for c.

3.2.1.3 Create an output stream

Optional parameters may be passed to subroutines new stream and add stream element in
order to specify the attributes of output streams and memory buffers. Furthermore, routines
are available to change default values for optional parameters.

The interface of the routine to create an output stream is:
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SUBROUTINE new stream (stream ,name [,filetype] [,post suf] [,rest suf]

[,init suf] [,lpost] [,lpout] [,lrerun] [,lcontnorest]

[,linit] [,interval])

name type intent default description

stream type(t stream) pointer Returned reference to the new output
stream.

name character(len=*) in Name of the new output stream.
[filetype] integer in out filetype Type of output file. The default (GRIB)

may be changed in namelist /SDSCTL/.
Alternatively NETCDF may be passed.

[post suf] character(len=*) in ’ ’//name Suffix of the output file associated with
the stream. The default is derived from
the name of the output stream.

[rest suf] character(len=*) in ’ ’//name Suffix of the rerun file.
[init suf] character(len=*) in ’ ’//name Suffix of initial file.
[lpost] logical in .true. Postprocessing flag. If .true. an output

file is created for this stream.
[lpout] logical in .true. Output flag. The stream is written to the

output file if lpout=.true
[lrerun] logical in .true. If .true. the stream is read/written

from/to the rerun file.
[lcontnorest] logical in — Continue a restart even if this stream is

not present in any rerun file.
[linit] logical in .true. Write to initial file (does not work?)
[interval] type(io time event) in putdata Postprocessing output interval. Default:

12 hours.

Optional parameters are given in brackets [ ]. They should always be passed by keyword because
the number and ordering of optional parameters may change.

Valid values for the argument out filetype are defined within module mo memory base:

INTEGER ,PARAMETER :: GRIB = 1

INTEGER ,PARAMETER :: NETCDF = 2

For specification of a non-standard output time interval data type io time event (de-
fined in module mo time event ) has to be passed as argument interval. For
example, in order to write every time step or in 6 hourly intervals, specify:
interval=io time event(1,’steps’,’first’,0) or (6,’hours’,’first’,0), respectively.

Once a stream has been created, a reference can be obtained by calling subroutine get stream:

SUBROUTINE get stream (stream ,name)

name type intent default description

stream type(t stream) pointer Returned reference to the output stream.
name character(len=*) in Name of the output stream.

3.2.1.4 Add a field to the output stream

The routine to add new elements to the output stream is:
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SUBROUTINE add stream element (stream ,name ,ptr [,ldims] [,gdims] [,klev]

[,ktrac] [,units] [,longname] [,repr]

[,lpost] [,laccu] [lmiss,] [missval,]

[,reset] [,lrerun] [,contnorest] [,table]

[,code] [,bits] [,leveltype] [,dimnames]

[,mem info] [,p4] [,no default] [,verbose])

name type intent default description

mandatory arguments :
stream type(t stream) inout Output stream.
name character(len=*) in Name of the field to add to the out-

put stream.
ptr real(:,:[,:][,:]) pointer Returned reference to the memory

of the 2- or 3- or 4-dimensional field.

specification of dimensions :
[ldims(:)] integer in cf. text Local size on actual processor.
[gdims(:)] integer in cf. text Global size of the field.
[klev] integer in cf. text Number of vertical levels.
[ktrac] integer in 0 Number of tracers.
[repr] integer in GRIDPOINT Representation.
[leveltype] integer in cf. text Dimension index of the vertical co-

ordinate.

postprocessing flags :
[lpost] logical in .false. Write the field to the postprocessing

file.
[laccu] logical in .false. “Accumulation” flag: Does no accu-

mulation but divides variable by the
number of seconds of the output in-
terval and resets it to 0 after output.

[reset] real in 0. Reset field to this value after output
(default is zero).

rerun flags :
[lrerun] logical in .false. Flag to read/write field from/to the

rerun file.
[contnorest] logical in .false. If contnorest=.true., continue

restart, stop otherwise.

attributes for NetCDF output :
[units] character(len=*) in ’ ’ Physical units.
[longname] character(len=*) in ’ ’ Long name.
[dimnames(:)] character(len=*) in ’lon’[,’lev’],’lat’ Dimension names.

attributes for GRIB output :
[table] integer in 0 table number.
[code] integer in 0 code number.
[bits] integer in 16 number of bits used for encoding.

Missing values :
[lmiss] logical in .false. If lmiss=.true., missing values are

set to missval, not set at all other-
wise.

[missval] real in −9× 1033 missing value.
miscellaneous arguments :
[mem info] type(memory info) pointer Reference to meta data information.
[p4(:,:,:,:)] real pointer Pointer to allocated memory pro-

vided.
[no default] logical in .false. Default values usage flag.
[verbose] logical in .false. Produce diagnostic printout.
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Most arguments of the routine are optional. They may be given for the following purposes:

specification of dimensions:
The total size of the field is specified by the parameter gdims. In a parallel environment,
the part allocated on a processor element is specified by the parameter ldims. The
order of dimensions is (lon,lat) for 2–d, (lon,lev,lat) for 3–d and (lon,lev,any,lat) for 4–
dimensional gridpoint fields. The number of size of gdims and ldims corresponds to the
rank of ptr(:,:).

Generally, it is not necessary to give dimension information. The sizes of the fields are
derived from the model field sizes. If a 2–dimensional pointer ptr(:,:) is provided for
ptr, a SURFACE field is assumed. If a 3-dimensional pointer ptr(:,:,:) is provided, a
HYBRID field (lon,lev,lat) is assumed.

For the following cases optional arguments must be specified to overwrite the defaults:

The number of vertical levels differs from the number of model levels

To specify a number of levels different from the standard σ–hybrid co–ordinate sys-
tem used in the model, the parameter klev may be specified. A HYBRID coordinate
system is assumed in this case. However if the field is written to the postprocessing
file (lpost=.true.), it is recommended to either pass a dimension index to param-
eter leveltype or the name of the dimensions to dimnames in order to pass proper
attributes to the NetCDF and GRIB writing routines.

For the usual cases, dimension indices are predefined (cf. table 3.1) and may be
accessed from module mo netcdf. New dimensions may be defined by the use of the
subroutine add dim as described in section 3.2.1.8.

The field is not a gridpoint field
For non Gaussian gridpoint fields appropriate values should be passed as parameter
repr. Predefined values (mo linked list) are:

INTEGER ,PARAMETER :: UNKNOWN = -huge(0)

INTEGER ,PARAMETER :: GAUSSIAN = 1

INTEGER ,PARAMETER :: FOURIER = 2

INTEGER ,PARAMETER :: SPECTRAL = 3

INTEGER ,PARAMETER :: HEXAGONAL = 4

INTEGER ,PARAMETER :: LAND = 5

INTEGER ,PARAMETER :: GRIDPOINT = GAUSSIAN

In all other cases, gdims and ldims have to be defined explicitly.

postprocessing flags:
In order to write a field to an output file, lpost=.true. must be specified. Generally

the actual values of the field are written. However, if laccu=.true. is specified, the
values are divided by the number of seconds of the output interval before output and set
to the value of the variable reset afterwards. The default is 0. In this case the fields
should be incremented at each time step with values multiplied by the time step length
in order to write temporarily averaged values to the output file. If the field is set to the
maximum or minimum value during the output time period, values of reset=-huge(0.)
or reset=huge(0.) shall be passed.
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rerun flags:
To include the field in the rerun files, lrerun=.true. must be specified.

attributes for NetCDF output:
For NetCDF output, the physical units, long name, and dimension names of the field

should be provided.

attributes for GRIB output:
For GRIB output, a table number and code number is required. A predefined value AUTO

may be passed as parameter code in order to automatically generate unique GRIB code
numbers. The number of bits used for encoding may be changed by argument bits.

miscellaneous arguments:
If verbose=.true. is specified, a printout is generated.

The default values of the optional parameters may be changed by calling the subroutine
default stream setting as described below. However if no defaults=.true. is speci-
fied, these changed default values will not be used.

Generally memory is allocated for the argument ptr when calling add stream element,
but memory may be provided externally by passing it via the argument p4. Even if 2–
dimensional or 3–dimensional arrays are accessed via ptr, 4–dimensional fields are used
internally and must be passed for p4 (with dimension sizes (lon,lat,1,1) or (lon,lev,lat,1),
respectively).

Meta data information about memory may be accessed by the argument mem info.

3.2.1.5 Change of default values for optional arguments

The default values for the optional arguments of subroutine add stream entry may be changed
for all subsequent calls related to an output stream by calling the subroutine
default stream setting. This subroutine accepts the same arguments as subroutine
add stream entry:
SUBROUTINE default stream setting (stream [,units] [,ldims] [,gdims] [,repr]

[,lpost] [,laccu] [,reset] [,lrerun]

[,contnorest] [,table] [,code] [,bits]

[,leveltype] [,dimnames] [,no default])

If no default=.true. is not given, previously changed default values are kept.
Properties and attributes of an existing stream element may be changed by calling
set stream element info . Again, the arguments are similar to those of
add stream element info:
set stream element info (stream ,name ,longname [,units] [,ldims]

[,gdims] [,ndim] [,klev] [,ktrac] [,alloc]

[,repr] [,lpost] [,laccu] [,lmiss]

[,missval] [,reset] [,lrerun] [,contnorest]

[,table] [,code] [,bits] [,leveltype]

[,dimnames] [,no default])

3.2.1.6 Access to stream elements

References to previously defined stream elements or to their meta data can be obtained by
calling the subroutine get stream element or get stream element info, respectively:
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get stream element info (stream, name, info)

name type intent description

stream type(t stream) in output stream to which reference
has to be added.

name character(len=*) in name of stream element.
info type(memory info) out copy of meta data type content.

get stream element (stream, name, ptr)

name type intent description

stream type(t stream) in output stream list.
name character(len=*) in name of stream element.
ptr real(:,:[,:][,:]) pointer returned reference to stream ele-

ment memory.

3.2.1.7 Doubling of stream element entries

It is possible to add a reference to an output stream element to another output stream. By
calling the subroutine add stream reference. This is useful when the same field shall be
written to different output files.

add stream reference (stream ,name [,fromstream] [,lpost] [,kprec)]

name type intent description

stream type(t stream) inout output stream list to extend.
name character(len=*) in name of stream element to add.
[fromstream] character(len=*) in name of output stream to take the

element from.
[lpost] logical in postprocessing flag of the output

stream reference.
[kprec] integer in precision of GRIB format in bits

(default: 16).

3.2.1.8 Definition of new dimensions

If other dimensions are required than those defined in Table 3.1, new dimensions can be defined
by calling the subroutine add dim defined in module mo netcdf.

SUBROUTINE add dim (name ,len [,longname] [,units] [,levtyp]

[,single] [,value] [,indx])

name type intent default description

name character(len=*) in name of dimension.
len integer in size of dimension.
[longname] character(len=*) in ’ ’ long name of dimension.
[units] character(len=*) in ’ ’ physical units of dimension.
[levtyp] integer in 0 GRIB level type.
[single] logical in .false. flag indicating single level fields.
[value] real in 1,2,. . . values of dimension field.
[indx] integer out index to be passed as argu-

ment leveltype to subroutine
add stream element.
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dimension index name klev GRIB values units longname
leveltype

HYBRID ”lev” nlev 109 1,. . . ,nlev hybrid level
at layer
midpoints

HYBRID H ”ilev” nlev+1 109 1,. . . ,nlev+1 hybrid level
at layer in-
terfaces

SURFACE ”surface” 1 1 0 surface field
ABOVESUR2 ”2m” 1 105 0 m level 2m

above the
surface

ABOVESUR10 ”10m” 1 105 0 m level 10m
above the
surface

BELOWSUR ”jpgrnd” 5 111 3,19,78,268,698 cm levels below
the surface

TILES ”tiles” ntiles 70 1,. . . ,ntiles land surface
tile

SOILLEV ”soil layer” nsoil 71 1 cm soil levels
(water)

ROOTZONE ”root zones” nroot zones 72 1,. . . ,nroot zones root zone
CANOPY ”canopy layer” ncanopy 73 1,. . . ,ncanopy layers in

canopy

Table 3.1: Predefined dimensions

3.3 Date and time variables

In a general atmospheric circulation model such as ECHAM6 that can be used for simulations of
historic time periods but also in a “climate mode” for prehistorical time periods together with
an ocean model, the orbit of the Earth around the sun has to be rather flexible. The solar
irradiance is closely linked to the orbit. From the perspective of the Earth, certain aspects of the
orbit can be described with the help of a calendar. There are two different orbits implemented
in ECHAM6: An orbit with strictly 360 days of 24 hours in a year and another orbit that can be
characterized as proleptic Gregorian meaning that the Gregorian calendar of our days is applied
back to the past. Consequently, the historic dates before the 15th October 1582 are different
from those of the proleptic Gregorian calendar. E.g., historically, there is no 14th October
1582, but this date is identified with the 4th October 1582 of the historic Julian calendar. The
proleptic Gregorian calendar goes back to 4712/01/01 12:00:00 UTC time B.C. including a year
0. Fortran90 data structures are ideal to store and manipulate the heterogeneous structure of
time expressed in a calendar date and time of a day. We describe these data structures and
their usage in the following

3.3.1 Date–time variables in ECHAM6

The date and time of the Gregorian proleptic calendar can be represented in various ways
leading to the following definitions of date–time (DT) data types: time days, time intern,
time native. Their definition can be found in mo time conversion.f90.
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Listing 3.1: time days

type time_days\index{data type!time\_days}

! ...

integer :: day ! day in the proleptic Gregorian

! calendar since 4712/01/01 B.C.

integer :: second ! second in the day [0, 86399]

end type time_days

Listing 3.2: time intern

type time_intern\index{data type!time\_intern}

! ...

integer :: ymd ! ‘year month day ‘ of the proleptic

! Gregorian calendar

! (leading zeros omitted);

! e.g. 2001008 is the 8th of Oct. 200.

integer :: hms ! ‘hour minute second ‘ of ymd

! (leading zeros omitted);

end type time_intern

Listing 3.3: time native

type time_nativ \index{data type!time\_native}

! ...

integer :: year , month , day , hour , minute , second

end type_native

One can also use an array of 6 elements containing year, month, hour, minute, second.

For the composed data types time days, time intern, and time native, a direct access of
the components is not possible because they are declared being “PRIVATE”. Instead, they are
accessible by the use of subprograms defined in mo time conversion.f90. The reason for this
is the fact that it is easy to create dates and times that is not valid. Then, all subroutines using
such an invalid DT–variable would fail. In order to avoid this, all the subroutines changing one
of the components of the DT–variables test whether the resulting dates and times are correct.

3.3.2 Usage of DT–variables

A family of overloaded subroutines and functions is provided in the module
mo time conversion.f90 by ECHAM6 to handle date–time variables:

• Set a DT–variable of type time days, time native or time intern by the use of the
overloaded routine tc set. Example:

Listing 3.4: tc set
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type(time_native) :: my_date

call tc_set(kyear , kmonth , kday , khour , kminute , ksecond ,

mydate)

This call of tc set will search for the special routine set native that actually sets
a variable of type time native from the input variables kyear, kmonth, kday, khour,
kminute, and ksecond.

• Conversion of a variable of one time format into another:

There are 3 ∗ 2 = 6 possible conversions which can all be performed by a call of
tc convert(var1,var2), var1, var2 being of one of the 3 types.

• Getting components of a DT–variable

The components of a DT–variable can be retrieved by a call to the subroutine tc get.
The first argument of tc get is a variable of one of the DT–variable types, the follow-
ing arguments are all optional. Their names are the names of the components of the
corresponding DT–variable of the first argument. Example:

Listing 3.5: tc get

type(time_native) :: my_date

call tc_get(my_date ,year=kyear)\index{time manager!tc\_get}

call tc_get(my_date ,year=kyear ,second=ksecond)

In that case, the first call of tc get only retrieves the value of the year, whereas the
second call retrieves the year and the second of my date.

• Comparison of DT–variables

DT–variables can be compared using certain operators in order to know whether a certain
date is before or after a second date. Fortran90 provides the possibility to overload
intrinsic Fortran90 functions such as “<”, “>” or “==”. You can then use these operator
symbols also for the comparison of user defined data types. In that case, the user has to
provide an order on the domain of these variables.

Listing 3.6: overloaded operators

USE mo_time_conversion , ONLY: operator(<),operator (==),

operator(>)

TYPE(time_native) :: var1 , var2

! ...

IF (var1 < var2) THEN

!...

The argument of the if statement is true if the date of var1 is before the date of var2.

3.3.3 Information about actual date and time in ECHAM6

There are three variables in which the time and date of the previous (t−∆t), the current (t),
and the next time step (t+ ∆t) are stored. These variables are defined in mo time control:
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Listing 3.7: date and time variables

type(time_days) :: previous_date , current_date , next_date

3.3.4 Variables describing repeated events.

The variable types of DT variables described so far are used for a representation of absolute date
and time in ECHAM6. In this paragraph, the data structure associated with repeated events is
presented. This data structure is used in the namelists (section 2.3) to determine the frquency
of certain events. Each variable describing repeated events consist of an integer number and
the unit, describing the frequency of the event. In addition, some keywords can be set which
determine the position of the repeated events relative to the absolute time axis. The underlying
data structure is defined in mo time event:

Listing 3.8: io time event

type io_time_event\index{data type!io\_time\_event}

integer :: counter ! interval

character(len =20) :: unit ! unit

character(len =20) :: adjustment ! adjustment

integer :: offset ! offset

end type io_time_event

With the help of this data structure, we may define a variable outfrq that will describe the
output frequency of a stream for example.

Listing 3.9: outfrq

type(io_time_event) :: outfrq

A variable of such a type can be read from the namelist like all the other variables describing
repeated events (putdata, putrerun) but we also may whish to communicate it to all processors.
For this purpose, there is a special subroutine p bcast event defined in mo time control.f90

which is used in the following way:

Listing 3.10: p bcast event

USE mo_time_control , ONLY: p_bcast_event

call p_bcast_event(outfrq , pe_io)

The call of p bcast event sends this variable to all processors. Then, the variable outfrq can
be used in the definition of a new stream.

3.4 Submodel interface

3.4.1 Introduction

ECHAM6 allows the implementation of so–called submodels. A submodel can describe any addi-
tional physical processes that will either be linked in a one–way coupling to echam or a two–way
coupling. A one–way coupling in this context means that the additional physical processes are
such that they need input from the ECHAM6 base model but do not change the general circu-
lation. One could also say that the results of such a model are derived from the ECHAM6 base
model in a “diagnostic” way. If the base model is linked by a two–way coupling to a submodel,
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the submodel interacts with ECHAM6 and modifies the general circulation. An example for the
one–way coupling would be diagnostic chemistry implemented in such a way that the chemical
species are transported by the winds given by ECHAM6 and the chemical reactions are driven
by the pressure, temperature, humidity and radiation simulated by ECHAM6. Nevertheless, the
concentration of the chemical species would not be allowed to influence these quantities. A
two–way coupling would be introduced if the concentration of the chemical species influences
the radiation by absorption of radiation for example.
The implementation of such submodels needs an interface to the submodel that provides a
certain set of variables to the submodel routines. In fact, the submodel interface is a collection
of dummy subroutines in ECHAM6 inside which the special subroutines of a submodel can be
called. These special subroutines will not be a part of ECHAM6 but will perform all submodel
specific tasks as the solution of the chemical kinetic equations for example. In addition to
this submodel interface, many submodels need the introduction of tracers that are transported
with the air flow like water waper is transported. These tracers are often associated with
certain chemical species having specific physico–chemical properties. In general, it may occur
that a certain species is represented by several tracers (e.g. various CO tracers depending on
the region of emission of CO, so–called “tagged” tracers) so that every tracer has the same
physico–chemical properties. Conceptually, it is better to separate the tracer properties from a
list of physico–chemical species properties so that this information is present only once in the
program. This avoids inconsistent definition of species properties and is therefore more user
friendly. This separation is not yet finished in the current ECHAM6 version and the species data
structure will therefore not be described here although it is present. As soon as this species
concept has settled, this description will be added.

3.4.2 Submodel Interface

The submodel interface consists of the subroutines listed in Tab. 3.2 that are all collected in
module mo submodel interface.f90.

Table 3.2: Submodel interface subroutines. The subroutines are listed in the same order as
they are called in ECHAM6.

Subroutine Called in Explanation
init subm initialize.f90 Initialization of submodel. This com-

prises reading of specific submodel
data. However, this is not the right
place to read gridded fields.

init subm memory init memory of
mo memory streams.f90

Allocation of memory for submodel
either in streams or 2– and 3–
dimensional fields.

stepon subm stepon.f90 Called at the beginning of a new time
step. Good for reading data at regular
time intervals.

table continued on next page
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Table 3.2: Submodel interface — continued

physc subm 1 physc.f90 Call in the “physics” part of calcula-
tion. The “physics” processes are pro-
cesses in one column over a grid cell.
This subroutine is called before the ra-
diation calculation.

radiation subm 1 rrtm interface of
mo radiation.f90

Submodels can modify the optical
properties of the atmosphere here. It
is called before the radiation fluxes are
calculated.

radiation subm 2 rrtm interface of
mo radiation.f90

Good for radiation diagnostics per-
formed by submodels.

vdiff subm vdiff.f90 In this subroutine, net surface fluxes
can be calculated that will be used as
boundary conditions in the vertical dif-
fusion equation. Good for surface emis-
sion fluxes and dry deposition fluxes.

rad heat subm radheat.f90 Diagnostic of heating rates.
physc subm 2 physc.f90 First interface that is good for cal-

culation of physical processes of sub-
models like chemical kinetics or aerosol
physics. It is called before cloud
physics but after vdiff and radheat

cuflx subm cuflux.f90 Submodels can interfere with convec-
tion here. E.g. wet deposition of con-
vective clouds has to be implemented
here.

cloud subm cloud.f90 Implement interaction between cloud
physics and submodels here. E.g. “wet
chemistry” should be implemented
here. Wet deposition of large scale pre-
cipitation has to be implemented here.

physc subm 3 physc.f90 Second interface that is good for cal-
culation of physical processes of sub-
models like chemical kinetics or aerosol
physics. It is called after cloud physics.

physc subm 4 physc.f90 This is the right place for submodel di-
agnostics after all physics processes are
calculated.

free subm memory free memory of
mo memory streams.f90

Deallocation of allocated submodel
memory here is mandatory, otherwise
the internal rerun process will fail. In
addition, it is very important to set
back all submodel switches to their de-
fault values. In particular switches that
indicate that certain fields are allocated
or certain data are read.
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Inside these interface routines, the submodel specific routines should be called. These calls
have to be implemented all into mo submodel interface.f90 and the calls have to be effective
if and only if the respective submodel is switched on. Since mo submodel interface.f90 is
part of the ECHAM6 code but the submodel routines are not, the calls should be switched off/on
by compiler directives. In that case, the calls can be included in the standard version of
mo submodel interface.f90. Neither an extra version of this module has to be kept by the
submodel users nor any update has to be done “by hand”.
The parameter lists of the submodel interface routines are described in the following subsections.

3.4.2.1 Interface of init subm

Listing 3.11: init subm

SUBROUTINE init_subm

This subroutine has no parameter list.

3.4.2.2 Interface of init subm memory

Listing 3.12: init subm memory

SUBROUTINE init_subm_memory

This subroutine has no parameter list. In general, the fields allocated here belong to the
submodel. Since the submodel is supposed to be organized in modules, global submodel fields
should be defined as module variables and can be brought to any submodel subroutine by use
statements. Streams are easily accessible by their names. Nevertheless, subroutines of the
kind get stream or get stream element are slow and should not be used repeatedly. Instead,
pointers to the stream elements can be stored as global submodel variables and used later in
the program.

3.4.2.3 Interface of stepon subm

Listing 3.13: stepon subm

SUBROUTINE stepon_subm (current_date , next_date)

TYPE(time_days) :: current_date

TYPE(time_days) :: next_date

Table 3.3: Parameter list of arguments passed to stepon subm

name type intent description
current date time days time and date of current time step
next date time days time and date of prognostic time step

3.4.2.4 Interface of physc subm 1

Listing 3.14: physc subm 1



3.4. SUBMODEL INTERFACE 127

SUBROUTINE physc_subm_1 (kproma , kbdim , klev , &

klevp1 , ktrac , krow , &

papm1 , paphm1 , &

ptm1 , ptte , &

pxtm1 , pxtte , &

pqm1 , pqte )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphm1(kbdim ,klevp1)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqte (kbdim ,klev)

Table 3.4: Parameter list of arguments passed to physc subm 1

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
papm1(kbdim,klev) double prec. in pressure of dry air at center of model

layers at time step t−∆t
paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at time step t−∆t
ptm1(kbdim,klev) double prec. in temperature at center of model layers

at time step t−∆t
table continued on next page
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Table 3.4: Parameters of physc subm 1 — continued

ptte(kbdim,klev) double prec. in temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry
air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. in tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

3.4.2.5 Interface of radiation subm 1

Listing 3.15: radiation subm 1

SUBROUTINE radiation_subm_1 &

(kproma ,kbdim ,klev ,krow ,&

ktrac ,kaero ,kpband ,kb_sw ,&

aer_tau_sw_vr ,aer_piz_sw_vr ,aer_cg_sw_vr ,&

aer_tau_lw_vr ,&

ppd_hl ,pxtm1 )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: kaero

INTEGER , INTENT(in) :: kpband

INTEGER , INTENT(in) :: kb_sw

REAL(dp), INTENT(inout) :: aer_tau_sw_vr(kbdim ,klev ,kb_sw), &

aer_piz_sw_vr(kbdim ,klev ,kb_sw), &

aer_cg_sw_vr(kbdim ,klev ,kb_sw), &

aer_tau_lw_vr(kbdim ,klev ,kpband),&

REAL(dp), INTENT(in):: ppd_hl(kbdim ,klev)

REAL(dp), INTENT(in):: pxtm1(kbdim ,klev ,ktrac)
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Table 3.5: Parameter list of arguments passed to radiation subm 1

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
krow integer in index number of block of geographical

longitudes
ktrac integer in number of tracers
kaero integer in switch for aerosol radiation coupling
kpband integer in number of bands in the thermal radia-

tion wavelength range
kb sw integer in number of bands in the solar radiation

wavelength range
aer tau sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol optical depth of model layers
for solar radiation wavelength bands.
Here, the model layers are ordered from
the Earth’s surface (level index 1) to
the top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

aer piz sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol single scattering albedo for so-
lar radiation wavelength bands. Here,
the model layers are ordered from the
Earth’s surface (level index 1) to the
top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

aer cg sw vr

(kbdim,klev,kb sw)

double prec. inout aerosol asymmetry factor for solar ra-
diation wavelength bands. Here, the
model layers are ordered from the
Earth’s surface (level index 1) to the
top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

table continued on next page
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Table 3.5: Parameters of radiation subm 1 — continued

aer tau lw vr

(kbdim,klev,kpband)

double prec. inout aerosol optical depth of model layers for
thermal radiation wavelength bands.
Here, the model layers are ordered from
the Earth’s surface (level index 1) to
the top of the atmosphere (level index
klev) as indicated by vr = vertically
reversed

ppd hl(kbdim,klev) double prec. in absolute value of dry air pressure dif-
ference between upper and lower limit
of model layers at time t−∆t

pxtm1(kbdim,klev,ktrac)double prec. in tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

3.4.2.6 Interface of radiation subm 2

Listing 3.16: radiation subm 2

SUBROUTINE radiation_subm_2(kproma , kbdim , krow , klev , &

ktrac , kaero , &

pxtm1 )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: kaero

REAL(dp), INTENT(in) :: pxtm1 (kbdim ,klev ,ktrac)

Table 3.6: Parameter list of arguments passed to radiation subm 2

name type intent description
kproma integer in actual length of block of geographical

longitudes (one longitude block can
contain grid cells of various geograph-
ical latitudes)

kbdim integer in maximum length of block of geo-
graphical longitudes (one longitude
block can contain grid cells of various
geographical latitudes)

krow integer in index number of block of geographical
klev integer in number of model levels (layers)
ktrac integer in number of tracers
kaero integer in switch for aerosol radiation coupling

table continued on next page
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Table 3.6: Parameters of radiation subm 2 — continued

pxtm1(kbdim,klev,ktrac)double prec. in tracer mass or molar mixing ratio
with respect to dry air at center of
model layers at time step t−∆t

3.4.2.7 Interface of vdiff subm

Listing 3.17: vdiff subm

SUBROUTINE vdiff_subm(kproma , kbdim , klev , klevp1 , &

ktrac , krow , &

ptm1 , pum1 , pvm1 , pqm1 , &

papm1 , paphm1 , paphp1 , pgeom1 , ptslm1 ,&

pxtm1 , pseaice ,pforest , &

pfrl , pfrw , pfri , pcvs , pcvw , &

pvgrat , ptsw , ptsi , &

pu10 , pv10 , &

paz0 , paz0l , paz0w , paz0i , &

pcfm , pcfnc , pepdu2 , pkap , &

pri , ptvir1 , ptvl , &

psrfl , pcdn , pqss , pvlt , &

loland , &

pxtte , pxtems , &

pxlm1 , pxim1 )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pum1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pvm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphm1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: pgeom1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptslm1 (kbdim)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pseaice (kbdim)

REAL(dp), INTENT(in) :: pforest (kbdim)

REAL(dp), INTENT(in) :: pfrl (kbdim)

REAL(dp), INTENT(in) :: pfrw (kbdim)

REAL(dp), INTENT(in) :: pfri (kbdim)

REAL(dp), INTENT(in) :: pcvs (kbdim)

REAL(dp), INTENT(in) :: pcvw (kbdim)

REAL(dp), INTENT(in) :: pvgrat (kbdim)
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REAL(dp), INTENT(in) :: ptsw (kbdim)

REAL(dp), INTENT(in) :: ptsi (kbdim)

REAL(dp), INTENT(in) :: pu10 (kbdim)

REAL(dp), INTENT(in) :: pv10 (kbdim)

REAL(dp), INTENT(in) :: paz0 (kbdim)

REAL(dp), INTENT(in) :: paz0l (kbdim)

REAL(dp), INTENT(in) :: paz0w (kbdim)

REAL(dp), INTENT(in) :: paz0i (kbdim)

REAL(dp), INTENT(in) :: pcfm (kbdim ,klev)

REAL(dp), INTENT(in) :: pcfnc (kbdim)

REAL(dp), INTENT(in) :: pepdu2

REAL(dp), INTENT(in) :: pkap

REAL(dp), INTENT(in) :: pri (kbdim)

REAL(dp), INTENT(in) :: ptvir1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptvl (kbdim)

REAL(dp), INTENT(in) :: psrfl (kbdim)

REAL(dp), INTENT(in) :: pcdn (kbdim)

REAL(dp), INTENT(in) :: pqss (kbdim ,klev)

REAL(dp), INTENT(in) :: pvlt (kbdim)

LOGICAL , INTENT(in) :: loland (kbdim)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtems (kbdim ,ktrac)

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

Table 3.7: Parameter list of arguments passed to vdiff subm

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
ptm1(kbdim,klev) double prec. in temperature at center of model layers

at time step t−∆t
pum1(kbdim,klev) double prec. in zonal wind component at center of

model layers at time step t−∆t
table continued on next page
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Table 3.7: Parameters of vdiff subm — continued

pvm1(kbdim,klev) double prec. in meridional wind component at center
of model layers at time step t−∆t

pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry
air) at center of model layers at time
step t−∆t

papm1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t−∆t

paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at time step t−∆t

paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

pgeom1(kbdim,klev) double prec. in geopotential at center of model layers
at time step t−∆t

ptslm1(kbdim) double prec. in surface temperature at time step t−∆t
pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with

respect to dry air at center of model
layers at time step t−∆t

pseaice(kbdim) double prec. in sea ice fraction
pforest(kbdim) double prec. in forest fraction
pfrl(kbdim) double prec. in land fraction
pfrw(kbdim) double prec. in surface water fraction
pfri(kbdim) double prec. in surface ice fraction
pcvs(kbdim) double prec. in snow cover fraction
pcvw(kbdim) double prec. in wet skin fraction
pvgrat(kbdim) double prec. in vegetation ratio
ptsw(kbdim) double prec. in surface temperature over water
ptsi(kbdim) double prec. in surface temperature over ice
pu10(kbdim) double prec. in zonal wind component 10 m above the

surface
pv10(kbdim) double prec. in meridional wind component 10 m above

the surface
paz0(kbdim) double prec. in roughness length
paz0l(kbdim) double prec. in roughness length over land
paz0w(kbdim) double prec. in roughness length over water
paz0i(kbdim) double prec. in roughness length over ice
pcfm(kbdim,klev) double prec. in stability dependent momentum trans-

fer coefficient at center of model layers
pcfnc(kbdim) double prec. in function of heat transfer coefficient; not

set?
pepdu2 double prec. in a constant set in vdiff.f90. It is used

e.g. in mo surface land as the allowed
minimum of the square of the absolute
wind velocity

pkap double prec. in von Karman constant
table continued on next page



134 CHAPTER 3. TECHNICAL DOCUMENTATION

Table 3.7: Parameters of vdiff subm — continued

pri(kbdim) double prec. in Richardson number for moist air
ptvir1(kbdim,klev) double prec. in potential density temperature
ptvl(kbdim) double prec. in virtual temperature over land
psrfl(kbdim) double prec. in net surface solar radiation flux at time

(?) t
pcdn(kbdim) double prec. in heat transfer coefficient averaged over

land, water and ice cover fraction of a
grid box

pqss(kbdim,klev) double prec. in specific humidity at which the air is sat-
urated at time (?) t

pvlt(kbdim) double prec. in obsolete, will be removed
loland(kbdim) double prec. in logical land mask including glaciers
pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-

ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

pxtems(kbdim,ktrac) double prec. inout surface emission flux
pxlm1 double prec. in cloud liquid water content at center of

model layers at time step t−∆t
pxim1 double prec. in cloud water ice content at center of

model layers at time step t−∆t

3.4.2.8 Interface of rad heat subm

Listing 3.18: rad heat subm

SUBROUTINE radheat_subm

(kproma ,kbdim ,klev ,&

klevp1 ,krow ,pconvfact ,&

pflxs ,pflxt)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: pconvfact(kbdim ,klev)

REAL(dp), INTENT(in) :: pflxs(kbdim ,klevp1), pflxt(kbdim ,klevp1

)

Table 3.8: Parameter list of arguments passed to rad heat subm

name type intent description

table continued on next page
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Table 3.8: Parameters of rad heat subm — continued

kproma integer in actual length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
krow integer in index number of block of geographical

longitudes
pconvfact(kbdim,klevp1) double prec. in conversion factor for conversion of en-

ergy flux differences between upper and
lower layer boundary to heating rate of
the air in this layer. The factor is cal-
culated for the time at time step t−∆t.

pflxs(kbdim,klevp1) double prec. in net energy flux of solar radiation inte-
grated over all solar radiation bands at
the layer interfaces for time t

pflxt(kbdim,klevp1) double prec. in net energy flux of thermal radiation
integrated over all thermal radiation
bands at the layer interfaces for time
t

3.4.2.9 Interface of physc subm 2

Listing 3.19: physc subm 2

SUBROUTINE physc_subm_2 &

(kproma , kbdim , klev , klevp1 , ktrac , krow , &

itrpwmo , itrpwmop1 , &

paphm1 , papm1 , paphp1 , papp1 , &

ptm1 , ptte , ptsurf , &

pqm1 , pqte , pxlm1 , pxlte , pxim1 , pxite , &

pxtm1 , pxtte , &

paclc , ppbl , &

loland , loglac )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow

INTEGER , INTENT(in) :: itrpwmo (kbdim)

INTEGER , INTENT(in) :: itrpwmop1(kbdim)
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REAL(dp), INTENT(in) :: paphm1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: ptsurf (kbdim)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pqte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pxite (kbdim ,klev)

REAL(dp), INTENT(in) :: paclc (kbdim ,klev)

REAL(dp), INTENT(in) :: ppbl (kbdim)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

LOGICAL , INTENT(in) :: loland (kbdim)

LOGICAL , INTENT(in) :: loglac (kbdim)

Table 3.9: Parameter list of arguments passed to physc subm 2

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
itrpwmo(kbdim) integer in index of model level at which meteoro-

logical tropopause was detected at time
t

itrpwmop1(kbdim) integer in index of model level at which meteoro-
logical tropopause was detected plus 1
at time t

paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at time step t−∆t

papm1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t−∆t

table continued on next page
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Table 3.9: Parameters of physc subm 2 — continued

paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. in temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

ptsurf(kbdim) double prec. in surface temperature at time step t
pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry

air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. in tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

pxlm1 double prec. in cloud liquid water content at center of
model layers at time step t−∆t

pxlte double prec. in cloud liquid water tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxim1 double prec. in cloud water ice content at center of
model layers at time step t−∆t

pxite double prec. in cloud water ice tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

paclc(kbdim,klev) double prec. in cloud fraction at center of model layers
at time step t

ppbl(kbdim) double prec. in model layer index of geometrically
highest model layer of planetary
boundary layer converted to a real
number at time t

table continued on next page
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Table 3.9: Parameters of physc subm 2 — continued

loland(kbdim) double prec. in logical land mask including glaciers
loglac(kbdim) double prec. in logical glacier mask

3.4.2.10 Interface of cuflx subm

Listing 3.20: cuflx subm

SUBROUTINE cuflx_subm(kbdim , kproma , klev , ktop , krow , &

pxtenh , pxtu , prhou , &

pmfu , pmfuxt , &

pmlwc , pmiwc , pmratepr ,pmrateps , &

pfrain , pfsnow , pfevapr , pfsubls , &

paclc , pmsnowacl , &

ptu , pdpg , &

pxtte )

INTEGER , INTENT(in) :: kbdim , kproma , klev , ktop , &

krow

REAL(dp), INTENT(in) :: pdpg(kbdim ,klev), &

pmratepr(kbdim ,klev), &

pmrateps(kbdim ,klev), &

pmsnowacl(kbdim ,klev), &

ptu(kbdim ,klev), &

pfrain(kbdim ,klev), &

pfsnow(kbdim ,klev), &

pfevapr(kbdim ,klev), &

pfsubls(kbdim ,klev), &

pmfu(kbdim ,klev), &

paclc(kbdim ,klev), &

prhou(kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtte(kbdim ,klev ,ntrac), &

pmlwc(kbdim ,klev), &

pmiwc(kbdim ,klev), &

pxtenh(kbdim ,klev ,ntrac), &

pxtu(kbdim ,klev ,ntrac), &

pmfuxt(kbdim ,klev ,ntrac)

Table 3.10: Parameter list of arguments passed to cuflx subm

name type intent description
kbdim integer in maximum length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

table continued on next page
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Table 3.10: Parameters of cuflx subm — continued

kproma integer in actual length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
ktop integer in Could be the minimum model layer in-

dex of cloud top layers over one block.
In fact, it is set to 1 in cuflx

pxtenh(kbdim,klev,ntrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t+ ∆t

pxtu(kbdim,klev,ntrac) double prec. inout tracer mass mixing ratio with respect
to cloud water at center of model layers
in the liquid or solid cloud water phase
at time step t+ ∆t

prhou(kbdim,klev) double prec. in dry air density at center of model layers
at time step t+ ∆t

pmfu(kbdim,klev) double prec. in convective air mass flux at center of
model layers at time t

pmfuxt(kbdim,klev,ntrac) double prec. inout net tracer mass flux due to convective
transport and wet deposition at center
of model layers at time step t + ∆t on
exit (in mass mixing ratio per time)

pmlwc(kbdim,klev) double prec. inout liquid water content (mass of liquid wa-
ter per mass of dry air) at center of
model layers at time t+ ∆t on exit

pmiwc(kbdim,klev) double prec. inout ice water content (mass of water ice per
mass of dry air) at center of model lay-
ers at time t+ ∆t on exit

pmratepr(kbdim,klev) double prec. in rain formation rate in mass water per
mass dry air converted to rain at center
of model layers at time step t

pmrateps(kbdim,klev) double prec. in ice formation rate in mass water per
mass dry air converted to snow at cen-
ter of model layers at time step t

pfrain(kbdim,klev) double prec. in rain flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfsnow(kbdim,klev) double prec. in snow flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfevapr(kbdim,klev) double prec. in evaporation of rain at centers of model
layers per grid box area at time t

pfsubls(kbdim,klev) double prec. in sublimation of snow at centers of model
layers per grid box area at time t

table continued on next page
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Table 3.10: Parameters of cuflx subm — continued

paclc(kbdim,klev) double prec. in cloud cover at center of model layer at
time step t

pmsnowaclc(kbdim,klev) double prec. in accretion rate of snow at center of
model layer at time step t

ptu(kbdim,klev) double prec. in temperature at center of model layer at
time step t−∆t

pdpg(kbdim,klev) double prec. in geopotential height at center of model
level

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

3.4.2.11 Interface of cloud subm

Listing 3.21: cloud subm

SUBROUTINE cloud_subm( &

kproma , kbdim , klev , ktop , &

krow , &

pmlwc , pmiwc , pmratepr , pmrateps , &

pfrain , pfsnow , pfevapr , pfsubls , &

pmsnowacl , paclc , ptm1 , ptte , &

pxtm1 , pxtte , paphp1 , papp1 , &

prhop1 , pclcpre)

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: ktop

INTEGER , INTENT(in) :: krow

REAL(dp), INTENT(in) :: pclcpre (kbdim ,klev)

REAL(dp), INTENT(in) :: pfrain (kbdim ,klev)

REAL(dp), INTENT(in) :: pfsnow (kbdim ,klev)

REAL(dp), INTENT(in) :: pfevapr (kbdim ,klev)

REAL(dp), INTENT(in) :: pfsubls (kbdim ,klev)

REAL(dp), INTENT(in) :: pmsnowacl(kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: prhop1 (kbdim ,klev)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klev +1)

REAL(dp), INTENT(inout) :: paclc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmlwc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmiwc (kbdim ,klev)

REAL(dp), INTENT(inout) :: pmratepr (kbdim ,klev)
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REAL(dp), INTENT(inout) :: pmrateps (kbdim ,klev)

REAL(dp), INTENT(in) :: pxtm1 (kbdim ,klev ,ntrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ntrac)

Table 3.11: Parameter list of arguments passed to cloud subm

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
ktop integer in Could be the minimum model layer in-

dex of cloud top layers over one block.
In fact, it is set to 1 in cuflx

krow integer in index number of block of geographical
longitudes

pmlwc(kbdim,klev) double prec. inout liquid water content (mass of liquid wa-
ter per mass of dry air) at center of
model layers at time t+ ∆t on exit

pmiwc(kbdim,klev) double prec. inout ice water content (mass of water ice per
mass of dry air) at center of model lay-
ers at time t+ ∆t on exit

pmratepr(kbdim,klev) double prec. inout rain formation rate in mass water per
mass dry air converted to rain at center
of model layers at time step t

pmrateps(kbdim,klev) double prec. inout ice formation rate in mass water per
mass dry air converted to snow at cen-
ter of model layers at time step t

pfrain(kbdim,klev) double prec. in rain flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfsnow(kbdim,klev) double prec. in snow flux at centers of model layers per
grid box area at time t, evaporation not
taken into account

pfevapr(kbdim,klev) double prec. in evaporation of rain at centers of model
layers per grid box area at time t

pfsubls(kbdim,klev) double prec. in sublimation of snow at centers of model
layers per grid box area at time t

pmsnowaclc(kbdim,klev) double prec. in accretion rate of snow at center of
model layer at time step t

table continued on next page
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Table 3.11: Parameters of cloud subm — continued

paclc(kbdim,klev) double prec. inout cloud cover at center of model layer at
time step t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. in temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

pxtm1(kbdim,klev,ntrac) double prec. in tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ntrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

paphp1(kbdim,klev+1) double prec. in pressure of dry air at interfaces between
model layers at prognostic time step t+
∆t

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

prhop1(kbdim,klev) double prec. in dry air density at center of model layers
at time step t+ ∆t

pclcpre(kbdim,klev) double prec. in fraction of grid box covered by precipi-
tation at time step t

3.4.2.12 Interface of physc subm 3

Listing 3.22: physc subm 3

SUBROUTINE physc_subm_3 &

(kproma , kbdim , klev , klevp1 , ktrac , krow , &

paphm1 , papm1 , paphp1 , papp1 , &

ptm1 , ptte , ptsurf , &

pqm1 , pqte , &

pxlm1 , pxlte , pxim1 , pxite , &

pxtm1 , pxtte , &

pgeom1 , pgeohm1 , &

paclc , &

ppbl , pvervel , &

loland , loglac )

INTEGER , INTENT(in) :: kproma

INTEGER , INTENT(in) :: kbdim

INTEGER , INTENT(in) :: klev

INTEGER , INTENT(in) :: klevp1

INTEGER , INTENT(in) :: ktrac

INTEGER , INTENT(in) :: krow
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REAL(dp), INTENT(in) :: paphm1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: papm1 (kbdim ,klev)

REAL(dp), INTENT(in) :: paphp1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: papp1 (kbdim ,klev)

REAL(dp), INTENT(in) :: ptm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: ptte (kbdim ,klev)

REAL(dp), INTENT(in) :: ptsurf (kbdim)

REAL(dp), INTENT(in) :: pqm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pqte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxlm1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxlte (kbdim ,klev)

REAL(dp), INTENT(in) :: pxim1 (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxite (kbdim ,klev)

REAL(dp), INTENT(inout) :: pxtm1 (kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout) :: pxtte (kbdim ,klev ,ktrac)

REAL(dp), INTENT(in) :: pgeom1 (kbdim ,klev)

REAL(dp), INTENT(in) :: pgeohm1 (kbdim ,klevp1)

REAL(dp), INTENT(in) :: paclc (kbdim ,klev)

REAL(dp), INTENT(in) :: ppbl (kbdim)

REAL(dp), INTENT(in) :: pvervel (kbdim ,klev)

LOGICAL , INTENT(in) :: loland (kbdim)

LOGICAL , INTENT(in) :: loglac (kbdim)

Table 3.12: Parameter list of arguments passed to physc subm 3

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at time step t−∆t
papm1(kbdim,klev) double prec. in pressure of dry air at center of model

layers at time step t−∆t
paphp1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between

model layers at prognostic time step t+
∆t

table continued on next page
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Table 3.12: Parameters of physc subm 3 — continued

papp1(kbdim,klev) double prec. in pressure of dry air at center of model
layers at time step t+ ∆t

ptm1(kbdim,klev) double prec. in temperature at center of model layers
at time step t−∆t

ptte(kbdim,klev) double prec. inout temperature tendency at center of
model layers accumulated over all pro-
cesses of actual time step until call of
this subroutine

ptsurf(kbdim) double prec. in surface temperature at time step t
pqm1(kbdim,klev) double prec. in specific humidity (with respect to dry

air) at center of model layers at time
step t−∆t

pqte(kbdim,klev) double prec. inout tendency of specific humidity (with re-
spect to dry air) at center of model lay-
ers accumulated over all processes of
actual time step until call of this sub-
routine

pxlm1 double prec. in cloud liquid water content (mass of liq-
uid water per mass of dry air) at center
of model layers at time step t−∆t

pxlte double prec. inout cloud liquid water tendency (rate of
change of mass of liquid water per mass
of dry air) at center of model layers ac-
cumulated over all processes of actual
time step until call of this subroutine

pxim1 double prec. in cloud water ice content (mass of wa-
ter ice per mass of dry air) at center of
model layers at time step t−∆t

pxite double prec. inout cloud water ice tendency (rate of
change of mass of ice water per mass
of dry air) at center of model layers ac-
cumulated over all processes of actual
time step until call of this subroutine

pxtm1(kbdim,klev,ktrac) double prec. inout tracer mass or molar mixing ratio with
respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

pgeom1(kbdim,klev) double prec. in geopotential at center of model layers
at time step t−∆t

pgeohm1(kbdim,klevp1) double prec. in geopotential at interfaces between
model layers at time step t−∆t

table continued on next page
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Table 3.12: Parameters of physc subm 3 — continued

paclc(kbdim,klev) double prec. in cloud cover at center of model layer at
time step t

ppbl(kbdim) double prec. in model layer index of geometrically
highest model layer of planetary
boundary layer converted to a real
number at time t

pvervel(kbdim,klev) double prec. in large scale vertical velocity at model
center at time step t

loland(kbdim) double prec. in logical land mask including glaciers
loglac(kbdim) double prec. in logical glacier mask

3.4.2.13 Interface of physc subm 4

Listing 3.23: physc subm 4

SUBROUTINE physc_subm_4 (kproma , kbdim , klev , &

klevp1 , ktrac , krow , &

paphm1 , pfrl , pfrw , &

pfri , loland , pxtm1 , &

pxtte)

INTEGER , INTENT(in) :: kproma , kbdim , klev , klevp1 , ktrac ,

krow

REAL(dp), INTENT(in) :: paphm1(kbdim ,klevp1), &

pfrl(kproma), &

pfrw(kproma), &

pfri(kproma), &

pxtm1(kbdim ,klev ,ktrac)

REAL(dp), INTENT(inout):: pxtte(kbdim ,klev ,ktrac)

LOGICAL , INTENT(in) :: loland(kproma)

Table 3.13: Parameter list of arguments passed to physc subm 4

name type intent description
kproma integer in actual length of block of geographi-

cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

kbdim integer in maximum length of block of geographi-
cal longitudes (one longitude block can
contain grid cells of various geographi-
cal latitudes)

klev integer in number of model levels (layers)
klevp1 integer in number of layers plus one
ktrac integer in number of tracers
krow integer in index number of block of geographical

longitudes
table continued on next page
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Table 3.13: Parameters of physc subm 4 — continued

paphm1(kbdim,klevp1) double prec. in pressure of dry air at interfaces between
model layers at time step t−∆t

pfrl(kbdim) double prec. in land fraction
pfrw(kbdim) double prec. in surface water fraction
pfri(kbdim) double prec. in surface ice fraction
loland(kbdim) double prec. in logical land mask including glaciers
pxtm1(kbdim,klev,ktrac) double prec. in tracer mass or molar mixing ratio with

respect to dry air at center of model
layers at time step t−∆t

pxtte(kbdim,klev,ktrac) double prec. inout tendency of tracer mass or molar mix-
ing ratio with respect to dry air at cen-
ter of model layers accumulated over all
processes of actual time step until call
of this subroutine

3.4.2.14 Interface of free subm memory

Listing 3.24: free subm memory

SUBROUTINE free_subm_memory

This subroutine has no parameter list.

3.4.3 Tracer interface

Tracer fields are constituents transported with the flow of air in the atmospheric model. In
addition to the transport, they are subject to several processes such as convection, diffusion,
emission, deposition and chemical conversion. Horizontal and vertical transport is carried out
by the atmospheric model and some standard processes can be performed by the atmospheric
model as well. Other processes which are specific for the tracer must be calculated by the
sub–model. The tracer interface is a collection of subroutines that allow the definition and
handling of a data structure containing information about tracers. This information comprises
the 3–dimensional mass or volume mixing ratio of the tracers but also variables that determine
the transport and physical properties of each individual tracer.
Tracers within ECHAM6 are represented by a 4–dimensional array (the three spatial dimensions
are supplemented by the tracer index) but pointers to individual tracers can be obtained so
that details of implementation of the data structure remains hidden. A one dimensional array
of a derived data type holds the meta–information. In the restart file the tracers are identified
by name, so that restarts can be continued with different sets of tracers if required. Reading
and writing of the tracers to the rerun file and to the output stream is based on the output
stream and memory buffer facilities described in section 3.2.

3.4.3.1 Request a new tracer

A new tracer with name ’A’ is requested from a module with name ’my module’ by a call to
the routine new tracer of mo tracer.f90:
call new tracer (’A’, ’my module’, idx)

Tracer properties are specified by optional arguments of the new tracer subroutine. The
interface is as follows:
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SUBROUTINE new tracer name, modulename [,spid] [,subname] [,trtype]

[,idx] [,nwrite] [,longname] [,units]

[,moleweight] [,code] [,table] [,bits] [,nbudget]

[,burdenid] [,ninit] [,vini] [,nrerun] [,nint]

[,ntran] [,nfixtyp] [,nvdiff] [,nconv] [,nwetdep]

[,ndrydep] [,nsedi] [,nemis] [,tdecay] [,nphase]

[,nsoluble] [,mode] [,myflag] [,ierr])

name type intent default function∗ description

identification of the tracer :
name character(len=*) in es name of the tracer
modulename character(len=*) in es name of the module request-

ing the tracer
[spid] integer in es species index
[subname] character(len=*) in es optional for ’colored’ tracers
[trtype] integer in es tracer type
[idx] integer out es index of the tracer

postprocessing output :
[nwrite] integer in ON p flag to print the tracer
[longname] character(len=*) in ” ” p long name
[units] character(len=*) in ” ” p physical units
[moleweight] real in 0. p molecular weight
[code] integer in 0 p GRIB code
[table] integer in 131 p GRIB table
[bits] integer in 16 p number of GRIB encoding

bits
[nbudget] integer in OFF ep% budget flag
[burdenid] integer in e% burden diagnostics number

initialization and rerun :
[ninit] integer in RESTART+ e initialization flag

CONSTANT

[vini] real in 0. e initialization value
[nrerun] integer in ON e restart flag

transport and other processes :
[nint] integer in e integration flag
[ntran] integer in TRANSPORT e% transport switch
[nfixtyp] integer in 1 e% type of mass fixer
[nvdiff] integer in ON e vertical diffusion flag
[nconv] integer in ON e convection flag
[nwetdep] integer in OFF e wet deposition flag
[ndrydep] integer in OFF e% dry deposition flag
[nsedi] integer in OFF e% sedimentation flag
[nemis] integer in OFF e% surface emission flag
[tdecay] real in 0. e exponential decay time

attributes interpreted by the submodel :
[nphase] integer in 0 s phase indicator
[nsoluble] integer in s solubility flag
[mode] integer in 0 s mode indicator
[myflag(:)] type(t flag) in (”,0.) s user defined flags

miscellaneous arguments :
[ierr] integer out OK=0 s error return value
∗ attributes interpreted by ECHAM (e), by the submodel (s), by the postprocessing module
(p), not yet implemented (%).
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In general, integer values are chosen to represent the flags in order to allow different choices:
0: OFF
1: ON, standard action
2: ..., alternative action
. . .
tag: specific action performed by the sub-model.

Small numbers indicate that some kind of standard action shall be performed by ECHAM.
Higher tag values indicate that the process will be handled by the submodel. For the following
actual arguments, valid values are defined by parameter statements (see mo tracdef.f90):
argument values description

OK, OFF, ON universal values
ntran NO ADVECTION, SEMI LAGRANGIAN, SPITFIRE, TPCORE transport flag
ninit INITIAL, RESTART, CONSTANT, PERIODIC initialization flag
nsoluble SOLUBLE, INSOLUBLE soluble flag
nphase GAS, AEROSOL, GAS OR AEROSOL, AEROSOLMASS,

AEROSOLNUMBER, UNDEFINED

phase indicator

code AUTO automatically chose
unique GRIB code

ierr OK,NAME USED,NAME MISS,TABLE FULL error return value (can-
not be used currently)

3.4.3.1.1 Tracer properties: Identification of the tracer and sub-model. Each
tracer is identified by a unique name and optionally by a subname in case of colored trac-
ers. In the postprocessing file colored tracers appear with the name name subname. Values
of optional arguments provided for the corresponding non–colored tracer (without argument
subname) are used for the colored tracer as well (despite the GRIB code number).
The sub–model identifies itself by a unique character string modulename. idx is the index of
the new tracer in the global arrays XT, XTM1, trlist.

3.4.3.1.2 Tracer properties: Postprocessing flags. The flag nwrite (default ON) deter-
mines, whether the tracer is written to the standard output stream. A separate file with name
STANDARDFILENAME tracer for GRIB, or STANDARDFILENAME tracer.nc for NetCDF format, is
written. The default file format GRIB can be changed to NetCDF by setting trac filetype=2

in the namelist runctl (see Tab. 2.17 of section 2.3.1.18).
If present, the attributes longname, units and moleweight are written to the NetCDF file.
Within GRIB files, fields are identified by a GRIB code number which must be given as
argument code. Note that codes 129 and 152 should not be used because they are at-
tributed to surface pressure and geopotential height. A predefined value AUTO is accepted
indicating automatic generation of unique GRIB code numbers. For GRIB files, a code file
STANDARDFILENAME tracer.codes is written to associate code numbers with tracer names.
For the tracers, a default GRIB table number 131 is chosen for tracer output. By default, 16
bits are used for encoding in GRIB format.

3.4.3.1.3 Tracer properties: Initialization and rerun. The nrerun flag (default=ON)
indicates, whether the tracer variable shall be read and written from/to the rerun file. The
tracers are identified by name in the rerun (NetCDF) file, so that they can be read selectively.
The initialization flag ninit is used to specify the initialization procedure in more detail:
Valid values are one of INITIAL (read from initial file, this must be done by the submodel),
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RESTART (read from restart file), CONSTANT (set to the initial value vini) or a combination
(e.g. RESTART+CONSTANT) to indicate that the quantity is read from the restart file in
case of a rerun but set to a predefined value otherwise.

3.4.3.1.4 Tracer properties: Transport and other processes. Tracer transport and
the impact of certain other processes is calculated by ECHAM. The flags nint, ntran, nfixtyp,
nvdiff, nconv, nwetdep, nsedi, ndrydep, nemis, tdecay are meant to switch ON or OFF the
respective processes (not fully implemented currently).
A value of tdecay6= 0 leads to an exponential decay of the tracer with time.

3.4.3.1.5 Tracer properties: Attributes interpreted by the submodel. The follow-
ing flags are not used by ECHAM. They are reserved to be used by the sub-models: nphase,
nsoluble, mode and myflag. myflag is an array of pairs of character strings and real values.

3.4.3.2 Access to tracers with get tracer

The routine get tracer returns the references to tracers already defined.

Example:

Listing 3.25: get tracer

CALL get_tracer (’SO2’,idx=index ,modulename=modulename)

IF (ierr ==0) THEN

PRINT *, ’Using tracer SO2 from module ’,modulename

ELSE

! eg. read constant tracer field

...

ENDIF

The interface of subroutine get tracer is:
SUBROUTINE get tracer (name [,subname] [,modulename] [,idx] [,pxt]

[,pxtm1] [,ierr])

name type intent description
name character(len=*) in name of the tracer
[subname] character(len=*) in subname of the tracer
[modulename] character(len=*) out name of requesting module
[idx] integer out index of the tracer
[pxt(:,:,:)] real pointer pointer to the tracer field
[pxtm1(:,:,:)] real pointer pointer to the tracer field at previ-

ous time step
[ierr] integer out error return value (0=OK, 1=tracer

not defined)

If the optional parameter ierr is not given and the tracer is not defined the program will
abort. Note that references (pxt, pxtm1) to the allocated memory cannot be obtained before
all tracers are defined and the respective memory is allocated in the last step of tracer definition.

3.4.3.3 Tracer list data type

Summary information on the tracers is stored in a global variable trlist. Attributes of individ-
ual tracers are stored in the component array trlist% ti(:). The definitions of the respective
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data types t trlist and t trinfo are given below:

Listing 3.26: t trlist

!

! Basic data type definition for tracer info list

!

TYPE t_trlist

!

! global tracer list information

!

INTEGER :: ntrac ! number of tracers specified

INTEGER :: anyfixtyp ! mass fixer types used

INTEGER :: anywetdep ! wet deposition requested

! for any tracer

INTEGER :: anydrydep ! wet deposition requested

! for any tracer

INTEGER :: anysedi ! sedimentation requested

! for any tracer

INTEGER :: anysemis ! surface emission flag

! for any tracer

INTEGER :: anyconv ! convection flag

INTEGER :: anyvdiff ! vertical diffusion flag

INTEGER :: anyconvmassfix !

INTEGER :: nadvec ! number of advected tracers

LOGICAL :: oldrestart ! true to read old restart

format

!

! individual information for each tracer

!

TYPE (t_trinfo) :: ti (jptrac) ! Individual settings

!for each tracer

!

! reference to memory buffer info

!

TYPE (t_p_mi) :: mi (jptrac) ! memory buffer information

!for each tracer

TYPE (memory_info), POINTER :: mixt ! memory buffer

! information for XT

TYPE (memory_info), POINTER :: mixtm1 ! memory buffer

! information for XTM1

END TYPE t_trlist

The component ntrac gives the total number of tracers handled by the model. The components
any... are derived by a bitwise OR of the corresponding individual tracer flags. Individual flags
are stored in component ti of type t trinfo. They reflect the values of the arguments passed
to subroutine new tracer.

Listing 3.27: t trinfo

TYPE t_trinfo
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!

! identification of transported quantity

!

CHARACTER(len=ln) :: basename ! name (instead of xt..)

CHARACTER(len=ln) :: subname ! optional for

!’colored ’ tracer

CHARACTER(len=ln) :: fullname ! name_subname

CHARACTER(len=ln) :: modulename ! name of requesting

! sub-model

CHARACTER(len=ln) :: units ! units

CHARACTER(len=ll) :: longname ! long name

CHARACTER(len=ll) :: standardname ! CF standard name

INTEGER :: trtype ! type of tracer:

! 0=undef., 1=prescribed ,

! 2=diagnostic (no transport),

! 3=prognostic (transported)

INTEGER :: spid ! species id (index in

! speclist) where physical/chem.

! properties are defined

INTEGER :: nphase ! phase (1=GAS, 2=AEROSOLMASS ,

! 3=AEROSOLNUMBER ,...)

INTEGER :: mode ! aerosol mode or bin number

REAL(dp) :: moleweight ! molecular mass (copied

! from species upon initialisation)

! Requested resources ...

!

INTEGER :: burdenid ! index in burden diagnostics

!

! Requested resources ...

!

INTEGER :: nbudget ! calculate budgets (default 0)

INTEGER :: ntran ! perform transport (default 1)

INTEGER :: nfixtyp ! type of mass fixer (default 1)

INTEGER :: nconvmassfix ! use xt_conv_massfix in cumastr

INTEGER :: nvdiff ! vertical diffusion flag

! (default 1)

INTEGER :: nconv ! convection flag (default 1)

INTEGER :: ndrydep ! dry deposition flag:

! 0=no drydep ,

! 1=prescribed vd,

! 2=Ganzeveld

INTEGER :: nwetdep ! wet deposition flag (default 0)

INTEGER :: nsedi ! sedimentation flag (default 0)

REAL :: tdecay ! decay time (exponential)

! (default 0.sec)

INTEGER :: nemis ! surface emission flag (default 0)

!

! initialization and restart
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!

INTEGER :: ninit ! initialization request flag

INTEGER :: nrerun ! rerun flag

REAL :: vini ! initialization value (default 0.)

INTEGER :: init ! initialisation method actually used

!

! Flags used for postprocessing

!

INTEGER :: nwrite ! write flag (default 1)

INTEGER :: code ! tracer code (default 235...)

INTEGER :: table ! tracer code table (default 0)

INTEGER :: gribbits ! bits for encoding (default 16)

INTEGER :: nint ! integration (accumulation)

! flag (default 1)

!

! Flags to be used by chemistry or tracer modules

!

INTEGER :: nsoluble ! soluble flag (default 0)

TYPE(t_flag) :: myflag (nf)! user defined flag

type(time_days) :: tupdatel ! last update time

type(time_days) :: tupdaten ! next update time

!

END TYPE t_trinfo

The data type t flag is defined as follows:

Listing 3.28: data type t flag

TYPE t_flag

CHARACTER(len=lf) :: c ! character string

REAL :: v ! value

END TYPE t_flag

The lengths of the character string components are:

Listing 3.29: Length of strings

INTEGER , PARAMETER :: ln = 24 ! length of name

! (char) components

INTEGER , PARAMETER :: ll = 256 ! length of

! longname component

INTEGER , PARAMETER :: lf = 8 ! length of flag

! character string

INTEGER , PARAMETER :: nf = 10 ! number of user

! defined flags

INTEGER , PARAMETER :: ns = 20 ! max number of submodels



Appendix A

Comptes rendus

A.1 cr2009 01 09: Implementation of S. Kinne’s clima-

tology of aerosol optical properties

A.1.1 Aerosol optical properties

S. Kinne compiled a new climatology of optical properties of aerosols. This climatology includes
the optical properties of coarse and fine mode particles in the short wave length range of the
solar spectrum (200 nm to 12195 nm in 14 bands) and the long wave length (3078 nm to
1000000 nm in 16 bands) range. The exact wave lengths of the short wave length (SW) bands
and long wave length (LW) bands are listed in Tab. A.1.
For the SW bands, the monthly mean of the total column aerosol optical depth for fine (f)

and coarse (c) mode aerosols (τ
(f,c)
sw ), the single scattering albedo for fine and coarse mode

aerosols (ω
(f,c)
sw ), and the asymmetry factor for fine and coarse mode aerosols (g

(f,c)
sw ) are stored

on a 1◦ × 1◦–grid. The altitude dependence of the aerosol optical depth is represented by
the extinction normed to a total column aerosol optical depth of 1 for fine and coarse mode
aerosols (ζ(f,c)). The altitude profiles do not depend on the wavelenth. In the LW range, only

the monthly mean of the total column aerosol optical depth τ
(c)
lw , its altitude distribution profile

given as the normed extinction ζ(c) (the same as for the SW bands), and the single scattering

albedo ω
(c)
lw are used to determine the optical properties of the aerosols in ECHAM6 since the fine

mode aerosols are too small to play a significant role at those wave lengths.
The altitude dependent optical depth is calculated in the following way. Let (∆zl)l=1,L be the
geometrical layer thickness of the ECHAM6 layers 1, . . . , L. Let the normed ζ(f,c) extinction of
the climatology be given for layers 1, . . . , K and

k :

{
{1, . . . , L} → {1, . . . , K}

l 7→ kl

be the function that gives the layer kl of the climatology inside of which the mid point of a
given layer l of ECHAM6 is located. For simplicity, we attribute to this ECHAM6 layer l the normed
extinction ζ

(f,c)
kl

. In general,

Z :=
L∑
l=1

ζ
(f,c)
kl

∆zl 6= 1

even if
∑K

k=1 ζ
(f,c)
k ∆yk = 1 for the layer thickness (yk)k=1,K of the climatology. We want to have

153
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Table A.1: Wave Lengths of the 14 bands in the short wave length range and the 16 bands
in the long wave length range as they are used in the radiation calculation of ECHAM6

band index λv/nm ECHAM6 band
solar radiation

11 00200 – 000263 solar 13
12 00263 – 000345 solar 12
13 00345 – 000442 solar 11
14 00442 – 000625 solar 10
15 00625 – 000778 solar 19
16 00778 – 001242 solar 18
17 01242 – 001299 solar 17
18 01299 – 001626 solar 16
19 01626 – 001942 solar 15
10 01942 – 002151 solar 14
11 02151 – 002500 solar 13
12 02500 – 003077 solar 12
13 03077 – 003846 solar 11
14 03846 – 012195 solar 14

thermal radiation
11 03078 – 0003846 thermal 16
12 03846 – 0004202 thermal 15
13 04202 – 0004444 thermal 14
14 04444 – 0004808 thermal 13
15 04808 – 0005556 thermal 12
16 05556 – 0006757 thermal 11
17 06757 – 0007194 thermal 10
18 07194 – 0008474 thermal 19
19 08474 – 0009259 thermal 18
10 09259 – 0010204 thermal 17
11 10204 – 0012195 thermal 16
12 12195 – 0014286 thermal 15
13 14286 – 0015873 thermal 14
14 15873 – 0020000 thermal 13
15 20000 – 0028571 thermal 12
16 28571 – 1000000 thermal 11
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the same total optical depth in the simulation with ECHAM6 as in the climatology. Thus, we
introduce renormalized extinctions

ζ̃
(f,c)
kl

:= ζ
(f,c)
kl

/Z

With these renormalized extinctions, we can calculate the optical depths τ
(f,c)
sw,lw,l for each layer

l = 1, L of ECHAM6:

τ
(f,c)
sw,lw,l = τ

(f,c)
sw,lwζ̃

(f,c)
kl

(A.1)

The total column optical depth is then exactly the given optical depth τ
(c,f)
sw,lw of the climatology.

For the SW bands, the optical properties of the combined fine and coarse aerosol modes are
obtained by the usual mixing rules. This results in the layer dependent optical depth τsw,l, the
layer dependent single scattering albedo ωsw,l, and the layer dependent asymmetry factor gsw,l

for each ECHAM6 layer l = 1, L:

τsw,l = τ
(f)
sw,l + τ

(c)
sw,l (A.2)

ωsw,l =
τ

(f)
sw,lω

(f)
sw + τ

(c)
sw,lω

(c)
sw

τsw,l

(A.3)

gsw,l =
τ

(f)
sw,lω

(f)
swg

(f)
sw + τ

(c)
sw,lω

(c)
sw g

(c)
sw

τsw,lωsw,l

(A.4)

For the LW bands, the absorption optical depth is defined by:

τ
(abs)
lw,l = τlwζ̃

(c)
kl

(1− ωlw) (A.5)

A.1.2 Preparation of data

A.1.2.1 Original data

The original data provided by S. Kinne are not in the format that is appropriate for a direct
use in ECHAM6. In particular, the order of the data with respect to the wave lengths is different.
The preprocessing of the original data is performed by idl–scripts and the cdo’s. The original
files are listed in table A.2.

Directory structure: VER 1007/anthrop AOD contains the directories history and
future rcp{26,45,85} in which the anthropogenic fine mode aerosol optical properties are
stored. The altitude distribution file
(aeropt kinne alt km20.nc), coarse mode aerosol data files
(aeropt kinne {sw,lw} b{14,16} coa.nc) and the preindustrial fine mode aerosol file
aeropt kinne sw b14 fin preind.nc are independent of the year and stored in VER 1007.

The altitude distribution file contains the extinction for a total optical depth of 1, but on a
non–equidistant vertical grid up to 20 km altitude. All optical properties depend on the wave
length except the anthropogenic optical properties that are given at 550 nm. The order of the
wave lengths is not the same as needed for ECHAM6.
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Table A.2: Original files with optical properties for aerosols, that have to be preprocessed for
the use in ECHAM6.

File name Content
aeropt kinne alt km20.nc Altitude information for fine and coarse

mode
aeropt kinne sw b14 fin preind.nc Optical properties of preindustrial fine mode

aerosols for solar wave length bands
aeropt kinne 550nm fin antAOD yyyy.nc Aerosol optical depth at 550 nm of anthro-

pogenic fine mode aerosols for solar wave
length bands for the years yyyy=1865 to
2000. Single scattering albedo and asymme-
try factor are those of the pre–industrial pe-
riod.

aeropt kinne 550nm fin rcpxx antAOD yyyy.ncAerosol optical depth at 550 nm of anthro-
pogenic fine mode aerosols for solar wave
length bands for various scenarios xx = 26,
45, 85 for the years yyyy=2001 to 2100. Sin-
gle scattering albedo and asymmetry factor
are those of the pre–industrial period.

aeropt kinne sw b14 coa.nc Optical properties of coarse mode aerosols for
solar wave length bands

aerop kinne lw1
¯
6 coa.nc Optical properties of coarse mode aerosols for

thermal radiation wave length bands.

A.1.2.2 Processing of original data

The original files have first to be transformed to a format that is suitable for the use in ECHAM6.
This is performed by the idl–script format.pro. The result files are in the same directories
as the corresponding original files and are listed in Table A.3. In this step, the fine mode
aerosol optical properties of preindustrial fine mode aerosols and those of anthropogenic origin
are combined in one single file extended to all wave length bands. The preindustrial fine
mode aerosols optical properties are assumed to have the same wave length dependency as
the anthropogenic fine mode aerosols. Since the altitude distribution, single scattering albedo,
and asymmetry factors are assumed to be the same for these two kinds of aerosols, the aerosol
optical depth of preindustrial and anthropogenic fine mode aerosols can be summed at each
wave length after scaling the anthropogenic aerosol optical depth to the corresponding wave
length using the wave length dependency of the preindustrial fine mode aerosol optical depth.

In a second step, the result files of Table A.3 have to be interpolated to the various
ECHAM6 resolutions. This is done by the interpolate.sh script using the cdo command
remapcon. The resulting files are those of Table A.4. These files are stored in bliz-
zard.dkrz.de:/pool/data/ECHAM6/Txx/aero2.

Usage of format.pro and interpolate.sh:

Adjust the following variables in format.pro:
base path: Absolute path where data are located, e.g. .../VER 1007

file altitude: Path and filename of altitude file,
e.g. ...aeropt kinne alt km20.nc

files lw: Path and filename of coarse mode aerosol properties for thermal radiation,
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Table A.3: Correspondence of original files (left) with files in ECHAM6 suitable format (right)
for a year yyyy and scenario rcpzz.

Original ECHAM6 suitable format
aeropt kinne alt km20.nc aeropt kinne alt km20 equidist.nc

aeropt kinne sw b14 coa.nc aeropt kinne sw b14 coa rast.nc

aerop kinne lw1
¯
6 coa.nc aerop kinne lw1

¯
6 coa rast.nc

aeropt kinne sw b14 fin preind.nc

aeropt kinne 550nm fin antAOD[ rcpzz] yyyy.nc
aeropt kinne sw b14 fin[ rcpzz] yyyy rast.nc

Table A.4: Correspondence of files in ECHAM6 suitable format (left) and files in a certain
ECHAM6 resolution Txx for year yyyy and scenario rcpzz.

ECHAM6 suitable format Txx resolution
aeropt kinne sw b14 coa rast.nc Txx aeropt kinne sw b14 coa.nc

aerop kinne lw1
¯
6 coa rast.nc Txx aeropt kinne lw b16 coa.nc

aeropt kinne sw b14 fin[ rcpzz] yyyy rast.ncTxx aeropt kinne sw b14 fin[ rcpzz] yyyy.nc

e.g. ...aeropt kinne lw b16 coa.nc

file coarse sw: Path and filename of coarse mode aerosol properties for solar radiation,
e.g. ...aeropt kinne sw b14 coa.nc

file fine n sw: Path and filename of preindustrial fine mode aerosol properties for solar
radiation,
e.g. ...aeropt kinne sw b14 fin preind.nc

file fine a sw base: Path and base filename of anthropogenic fine mode aerosol properties
for solar radiation,
e.g. ...aeropt kinne 550nm fin antAOD rcp85

dir result: directory into which results are written.
byear: Start interpolation with byear.
eyear: Stop interpolation with eyear.
all: ’yes’: Format all files including coarse mode, ’no’: Format fine mode aerosol properties
for solar wave lengths only.

Start the script in idl with command format.

The interpolate.sh script uses as input the files of the left column of Table A.4. Adjust the
following variables in interpolate.sh:
DATADIR: Absolute path containing the input files listed in the left column of Table A.4.
RESDIR: Absolute path where results files have to be written. Must already exist.
The script is called by

interpolate.sh n y z

where n is the spectral resolution without preceding “T” (e.g. 31), y the first year and z the
last year.
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A.1.3 Implementation into ECHAM6

mo aero kinne.f90: contains the public subroutines su aero kinne, read aero kinne,
set aop kinne.
su aero kinne: Allocate memory for all quantities needed in this module.
Called by setup radiation (mo radiation.f90).
read aero kinne: Reading of monthly mean aerosol optical depth for fine and coarse mode

aerosols (τ
(f,c)
sw,lw) integrated over the entire atmospheric column, the single scattering albedo

for fine and coarse mode aerosols (ω
(f,c)
sw,lw), the asymmetry factor for fine and coarse mode

aerosols (g
(f,c)
sw ) for the SW and LW bands, and the normalized extinction ζ(f,c). All the

quantities are distributed to all processors. The assignment of the months to the in-
dices 1,...,14 is 1=December (of predecessor year to actual year), 2=January, 3=Febru-
ary,...,12=November,13=December,14=January (of following year) in order to facilitate time
interpolation.
Called by stepon (stepon.f90) if radiation calculation is part of the current time step.
set aop kinne:

Calculation of the formulae (A.2–A.5).
Called by rrtm interface (mo radiation.f90).

A.1.4 Results

All results presented in this section are obtained using the aerosol optical properties in the
version feb 2010. We present some viewgraphs of the data read by ECHAM6 in order to show that
the correct optical properties are used in the model. The effect of the aerosols on the dynamics
and climate is not shown here. This formal check is necessary because of the complicated
ordering of wave lengths in ECHAM6. The original input data of ECHAM6 were interpolated in
time to December 1st, 1999, 00:52:30h, the exact time at which the data are written to the
output in ECHAM6 in the test experiment.
In Figure A.1 the optical properties in the thermal wave length range are presented. The only
relevant optical properties are the aerosol optical depth and the single scattering albedo. All
optical properties of ECHAM6 and the original files are identical to single precision.
In Figure A.2, we present the aerosol optical depth for three wave lengths of the solar radiation
range. The single scattering albedo and the asymmetry factor are depicted in Figures A.3
and A.4, respectively. In all cases, the original values and the values in ECHAM6 are identical to
single precision.
In Figure A.5, we show the resulting aerosol optical depth in ECHAM6 for one selected wave
length band (6757nm to 7194nm) of the thermal wave length range. The total aerosol optical
depth is integrated in the model and gives slightly different results from the original data due
to the modification of the aerosol optical depth according to equation A.5. The zonal mean
value of the aerosol optical depth is a mean over model levels. Since the thickness of the
layers in ECHAM6 depend on the geographical location and only the aerosol optical depth of a
layer but not the extinction is averaged, the zonal mean value can be considered as a non–
normalized weighted mean of the extinction using the layer thickness as weighting factor. The
coarse mode aerosol concentration strongly decreases with altitude so that the optical depth
decreases strongly with altitude. The aerosols are only tropospheric aerosols (volcanic aerosols
are read from a different data source) so that the optical depth is zero above the tropopause.
The spatial distribution of the aerosol optical depth shows four distinct local maxima due to
dust aerosols over the Western Sahara, Central Asia, North–Eastern China, and a very weak
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Figure A.1: Aerosol optical properties written to the output by ECHAM6 (left) and interpolated
“offline” from the original data (right) for the 1st Dec 1999, 0:52:30h. Top four panels: band 16
(3078nm to 3846nm), lower for panels: band 1 (28571nm to 1000000nm). Aerosol optical depth:
aod, single scattering albedo: ssa.
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Figure A.2: Aerosol optical depth for band 10 (442nm to 625nm) (left), band 1 (3077nm to
3846nm) (middle), and band 14 (3846nm to 12195nm) (right). The top six panels represent
the aerosol optical depth for the fine mode aerosols, the bottom six panels for the coarse mode
aerosol. The ECHAM6 values are in the top, the values derived from the original data in the
bottom row for the 1st Dec 1999, 0:52:30h, respectively.
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Figure A.3: Single scattering albedo for band 10 (442nm to 625nm) (left), band 1 (3077nm
to 3846nm) (middle), and band 14 (3846nm to 12195nm) (right). The top six panels represent
the single scattering albedo for the fine mode aerosols, the bottom six panels for the coarse
mode aerosol. The ECHAM6 values are in the top, the values derived from the original data in
the bottom row for the 1st Dec 1999, 0:52:30h, respectively.
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Figure A.4: Asymmetry factor for band 10 (442nm to 625nm) (left), band 1 (3077nm to
3846nm) (middle), and band 14 (3846nm to 12195nm) (right). The top six panels represent the
asymmtry factor for the fine mode aerosols, the bottom six panels for the coarse mode aerosol.
The ECHAM6 values are in the top, the values derived from the original data in the bottom row
for the 1st Dec 1999, 0:52:30h, respectively.
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one over Southern Australia. Sea salt aerosols are the source of the local maxima in the total
aerosol optical depth over the Northern Pacific and the ocean around the Antarctic region.
This rich spatial pattern is in contrast to the very simple geographical distribution of the Tanre
aerosols which exhibit a maximum over the Western Sahara due to dust only.

Figure A.5: Aerosol optical depth for the thermal wave length band 6757nm to 7194nm.
Total aerosol optical depth at left, zonal mean value at right.

In Figure A.6, we show the aerosol optical properties for one selected solar band 442nm to
625nm. The spatial distribution of the maxima in the aerosol optical depth is very similar to
the aerosol optical depth at the thermal wave length band presented above. The total aerosol
optical depth is the sum of the aerosol optical depth of the fine and coarse mode aerosols. The
distribution of the single scattering albedo shows that the dust aerosols between 40◦S and 40◦N
are much more absorbing (values of 0.96) than the sea salt aerosols that are predominant North
and South of 50◦ (single scattering albedo values > 0.99).

A.1.5 Differences between version VER 1007 (original version) and
feb 2010

The original files provided by Stefan Kinne in the version VER 1007 and feb 2010 did not show
differences for the following files (note that the files have different names in the original feb 2010
version):
cdo diff g30 fir.nc aeropt kinne lw b16 coa.nc :

0 of 624 records differ

cdo diff g30 coa.nc aeropt kinne sw b14 coa.nc :

0 of 546 records differ

cdo diff g30 pre.nc aeropt kinne sw b14 fin preind.nc :

0 of 546 records differ

cdo diff antAOD 1865.nc aeropt kinne 550nm fin antAOD 1865.nc :

0 of 12 records differ
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Figure A.6: Aerosol optical properties for the solar wave length band 442nm to 625nm. Total
aerosol optical depth (left) and zonal mean of the aerosol optical depth (right) at the top.
Zonal mean values of the single scattering albedo (left) and the asymmetry factor (right) at
the bottom.

But there were differences found in the anthropogenic aerosols for the year 2000:

cdo diff antAOD 2000.nc aeropt kinne 550nm fin antAOD 2000.nc :

Date Time Code Level Size Miss : S Z Max Absdiff Max Reldiff

1 : 2000-01-15 00:00:00 -1 0 64800 0 : F T 0.043737 0.94203

2 : 2000-02-15 00:00:00 -1 0 64800 0 : F T 0.061685 0.80000

3 : 2000-03-15 00:00:00 -1 0 64800 0 : F T 0.071232 0.86840

4 : 2000-04-15 00:00:00 -1 0 64800 0 : F T 0.063098 0.80000

5 : 2000-05-15 00:00:00 -1 0 64800 0 : F T 0.048934 0.80000

6 : 2000-06-15 00:00:00 -1 0 64800 0 : F T 0.074559 0.80000

7 : 2000-07-15 00:00:00 -1 0 64800 0 : F T 0.049585 0.80000

8 : 2000-08-15 00:00:00 -1 0 64800 0 : F T 0.053491 0.80000

9 : 2000-09-15 00:00:00 -1 0 64800 0 : F T 0.083610 0.80000

10 : 2000-10-15 00:00:00 -1 0 64800 0 : F T 0.083694 0.80000

11 : 2000-11-15 00:00:00 -1 0 64800 0 : F T 0.060531 0.88760
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12 : 2000-12-15 00:00:00 -1 0 64800 0 : F T 0.046521 0.81488

12 of 12 records differ

Furthermore, the altitude distribution is different. The differences in the anthropogenic aerosol
data are due to a wrong time interpolation in the feb 2010 version, but it was not clear whether
the changes in the altitude distribution and orography data are intended or accidentally. There-
fore, a modified VER 1007 data set is used in the following that applies exactly the same al-
titude and orography data as version feb 2010, but the new anthropogenic aerosol data. This
makes all time independent data (preindustrial and coarse mode aerosols) bit identical in the
modified VER 1007 and the feb 2010 version. We document the (small) differences due to the
anthropogenic aerosols between the two versions in the following.

A.1.6 Differences between the modified VER 1007 and the feb 2010
version

The modified version of the VER 1007 climatology uses the altitude distribution of the feb 2010
version. In that case, we get for the quantities mapped to equidistant altitudes and transformed
into a format that is suitable for the use in ECHAM6 on the original 1×1 degree grid no differences
for the year 1866:
cdo diff g alt km20 eq.nc aeropt kinne alt km20 equidist.nc:

0 of 1521 records differ

cdo diff g30 fin 1x1 1865.nc aeropt kinne sw b14 fin 1865 rast.nc:

0 of 1065 records differ

cdo diff g30 fir 1x1.nc aeropt kinne lw b16 coa rast.nc:

0 of 1137 records differ

cdo diff g30 coa 1x1.nc aeropt kinne sw b14 coa rast.nc:

0 of 1065 records differ

For the subsequent years, differences are found (see Fig.A.7–A.9). We present the result after
interpolation to the T31 resolution since the files become too large otherwise.
Total aerosol optical depth: The differences between the VER 1007 version and the feb 2010
version are small, except in some fairly small regions in the Indian Ocean in which the percentage
difference can reach 15%, 40%, and 40% for the years 1865, 1950, and 2000, respectively. Since
the absolute aerosol optical depth is below 0.1 in these regions we expect no impact on the
global radiation budget. The zonal mean values of the total aerosol optical depth (Fig. A.10) is
very similar in both versions and show a percentage difference of up to 2% only. The ten year
periodicity in the percentage difference comes from a time shift in the processing of the data
in the VER 1007 version compared to the feb 2010 version.
Extinction, single scattering albedo, asymmetry factor: The differences between the VER 1007
and the feb 2010 version is also small in these quantities for all years and remains below 5%,
0.5%, and 0.1% for extinction, single scattering albedo, and asymmetry factor respectively in
the zonal mean values throughout the whole altitude regime. The values for the extinction are
consistent with those of the total optical depth.



166 APPENDIX A. COMPTES RENDUS

Figure A.7: Optical properties of the aerosols for the solar spectrum, January 1866 (Ignore
the year 2000 in the titles, this is an error of the graphics program). Left column: New
modified version ver1007 (with altitude distribution of feb 2010), middle: version of feb 2010,
right column: percentage difference between new modified version and feb 2010 version. Top:
total aerosol optical depth, second row: zonal average of extinction, third row: zonal average
of single scattering albedo, bottom row: zonal average of asymmetry factor. The levels go from
surface to 20 km height in 0.5 km layers.
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Figure A.8: Same as Fig. A.7 but for the year 1950 (Ignore the year 2000 in the titles, this is
an error of the graphics program)
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Figure A.9: Same as Fig. A.7 but for the year 2000
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Figure A.10: Time series of zonal mean aerosol optical depth from 1865 to 2000. Right:
modified version ver1007 (with altitude distribution of feb 2010), middle: version of feb 2010,
right column: percentage difference between new modified version and feb 2010 version. (Note
that the time axis is in years not days)
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A.2 cr2014 03 31 rjs: Debug stream

The debug stream debugs allows to write two– and three–dimensional real grid–point fields
on either full or half levels into a stream at any place in the ECHAM6 program environment
without defining that stream explicitly. In order to enable the stream, you have to set
LDEBUGS=.TRUE. !default: .FALSE.
in the RUNCTL name list. The frequency at which a stream debugs will be written can be spec-
ified in an extra namelist group DEBUGSCTL by setting the putdebug stream variable. Example:

&DEBUGSCTL

putdebug_stream = 1,’steps ’,’first’,0

/

prints the debug stream at every time step. The default is:
putdebug stream = 6,’hours’,’first’,0.
The debug stream contains 14 predefined two–, and 14 predefined three–dimensional real grid–
point variables on full model levels (layer centres), and 6 three–dimensional grid–point variables
on half levels (layer interfaces) named zdf01, . . . , zdf14, ddf01, . . . , ddf14, and ddfh01,

. . . , ddfh06, respectively. They can be set at any place in the code as any other two– or three–
dimensional grid–point variable. They are shaped by the nproma related mapping procedure

T (nproma)
g in the respective code pieces.

Additional variables in the debug stream can be defined by requesting them in the DEBUGSCTL

name–list group. Set nzdf = nz, nddf = nd, or nddfh = nh to the number of nz, nd,
or nh additional two–dimensional variables (nz), or three–dimensional variables either on
full levels (layer centres, nd), or half levels (layer interfaces, nh), respectively. This will
create the additional variables vzdf[0]1, . . . , vzdf{nz}, vddf[0]1, . . . , vddf{nd}, and
vddfh[0]1, . . . , vddfh{nh} in the debugs stream, respectively. In each variable name, there
are as many leading zeros as needed to have the same number of digits as nz, nd, or nh have,
respectively. The default values are nz=nd=nh=0.
In order to set the variables of the debug stream inside ECHAM6, always use the ldebugs switch
together with the debugs module itself:

USE mo_control , ONLY: ldebugs

USE mo_debugs

Then, include the setting of the debug–stream variables in an if–clause if(ldebugs). When
you switch off the debug stream, this prevents ECHAM6 to crash because of the use of undefined
variables. Be aware that the last dimension of the variable is the block index that is called
krow or jrow depending on where you are in ECHAM6.
The additional variables vzdf.., vddf.., and vddfh.. can be accessed by pointers di-
rectly. The nz variables vzdf can be accessed by pvzdf(1:nz)%v, the nd variables vddf by
pvddf(1:nz)%v, and the nh variables vddfh by pvddfh(1:nz)%v. For the following example,
the name–list group debugsctl was set to

&debugsctl

putdebug_stream = 1, ’steps’, ’first’, 0

nddf=1

nddfh=3

nzdf =10

/
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This means that one additional 3–d variable, three additional 3d–variables for values at the layer
interfaces, and 10 additional 2–d variables are created. Only the names of the 2–d variables 1
to 9 contain leading zeros: vzdf01, vzdf02, . . . , vzdf09, vzdf10. The variables can be set
by the following piece of code:

USE mo_control , ONLY: ldebugs

USE mo_debugs

...

IF (ldebugs) THEN

ddf01 (1: kproma ,1:klev ,krow)=zaod_sw (1: kproma ,1:klev ,10)

zdf05 (1: kproma ,krow)=alake(jl,krow)

ddfh01 (1:nproma ,:,krow)=aphm1 (1:nproma ,:)

pvddf (1)%v(1:nproma ,:,krow)=apm1 (1:nproma ,:)

pvddfh (3)%v(1: nproma ,:,krow)=aphm1 (1:nproma ,:)

pvzdf (2)%v(1:nproma ,krow)=tm1 (1:nproma ,nlev ,krow)

END IF

This writes the 10th element of the 4–d variable zaod sw which is in fact a 3–d variable in
longitude, levels, and latitude into the 3–d variable ddf01 and alake into the 2–d variable
zdf05. aphm1 is written onto ddfh01 that can accommodate variables with values at layer
interfaces. In the following three lines, values are written to the 1st, 3rd, and 2nd additional
variables vddf1, vddfh3, and vzdf02, respectively. Only the name of the last variable contains
a leading zero because 10 additional 2–d variables were required by nzdf = 10 whereas the
number of the additional variables for all others is a one–digit number.
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A.3 cr2009 12 10: CO2 module

General remark: All submodels should be programmed in such a way that echam sbroutines
do not have to use any submodel specific variables or switches. The modularisation has to
be in such a way that all the calculations done with the variables of a submodel are done in
the module(s) of the submodel itself. For this purpose, echam variables have to be passed by
interface routines into some subroutines which are all collected in mo submodel interface. In
exactly these subroutines, the submodel specific subroutines are called. If there is an echam–
variable that has to be set or changed by a submodel, e.g. the tracer mixing ratios or tendencies
or a certain variable intervening in the radiation calculation, e.g. the profile of mixing ratios
of a certain gas, the procedure is the same: echam passes this variable into a subroutine of
mo submodel interface where the submodel can change this variable by calling a submodel
specific subroutine. In particular, variables of a certain submodel should never be included into
any parameter list of echam routines. Concerning the CO2 module, this is still not completely
accomplished as there are some flux variables of the CO2 submodel which are still passed from
physc to collect and from vdiff to update surface. Also here, the variables of JSBACH
and the ocean model corresponding to these fluxes should be set by the CO2 submodel in some
appropriate subprogram called by a certain interface routine. Nevertheless, I tried to work
towards this goal by this revision of the CO2 model.

A.3.1 Namelist

A switch lco2 was added to the submodelctl namelist for switching on an off the whole CO2

submodel. A co2ctl namelist was introduced. It contains the following variables:

lco2 emis logical, default: .false.. Switch on/off CO2 emissions read from a file.

lco2 flxcor logical, default: .false.. Switch on/off a flux correction in order to get a closed
CO2 budget.

lco2 2perc logical, default: .false.. Switch on/off a limitation of the relative CO2 tendency
in one time step to 2% of the current mass mixing ratio

lco2 clim logical, default: .false.. Not active for the moment. Was meant to switch on/off
interactive CO2. May be obsolete.

A.3.2 Implementation

The module mo co2 contains the following subroutines:

init submodel co2: Reads co2ctl namelist, initializes xtco2 stream. In this stream, there
are a lot of variables, some of which may be never used. Called from initialize →
init subm (mo submodel interface).

init co2: Defines new CO2 tracer and sets initial value of tracer. Called from initialize →
init subm

(mo submodel interface).

init co2 field: This is a small routine that defines some variables which are passed to JS-
BACH and the ocean containing CO2 related quantities and which have to be present



A.3. CR2009 12 10: CO2 MODULE 173

even if the CO2 submodel is not switched on. This has to be further revised with re-
spect to the above remark. The variables are: co2m1, co2 flux ocean, co2 flux land,

co2 flux, co2atmos, co2flux cpl. The values of these variables are set to 0 ex-
cept for co2atmos which is set to co2mmr. Called from initialize → init subm

(mo submodel interface).

reference co2: Gets and stores a pointer to the 3d–field containing the CO2 mixing ratio at
time t and t −∆t and the index of the CO2 tracer among the list of all tracers. Called
from init memory (mo memory streams) → init subm memory.

read co2 emission: Reads (annual) CO2 emissions from files. Called from stepon →
stepon subm. CO2 emissions must be contained in a file carbon emissions.nc that
may contain the emissions for several years. Emissions are supposed to change on a
yearly basis only. Emissions are read and go into the flux (tested).

co2 mbalance: Calculates the CO2 burden and calculates the necessary flux correction if
l co2flxcorr=.true..

co2 exchange: Calculates total netto flux of CO2 into the atmosphere. Called from physc →
physc subm 1.

co2 flux atmosphere ocean: Calculates CO2 flux from the ocean into the atmosphere. Called
from physc.

co2 te check: Checks mixing ratio of CO2 to be positive, if values ≤ 0 are found, the program
aborts. If
lco2 2perc=.true., the relative CO2 tendencies are limited to 2% of the current mixing
ratio of CO2. Called from physc → physc subm 4.

diag co2: Diagnostic of co2 flux acc, co2 flux land acc, co2 flux ocean acc,

co2 flux anthro acc,

co2 emission acc, co2 burden acc. These values are accumulated here, and hence the
temporal mean value over an output interval is written to the output file. Called from
physc → physc subm 4.

co2 flux correction: Calculation of flux correction from the burden. Called from stepon.
Here also, an interface routine should be implemented that allows to perform budget
corrections.

A.3.3 Results

In order to achieve consistency between all tracers, the total CO2 flux is now used as a lower
boundary condition in the solution procedure of the diffusion equation of vdiff as it is the case
for all other tracers. This may cause problems and has to be tested.
The coupling with radiation for ico2=1 is also implemented, runs technically and produces
spatially non-uniform CO2 mixing ratios being used in the radiation (I looked at the profiles
after gas profile).
The CO2–module runs technically with all submodel switches set to .true.. ECHAM can
also run with lco2=.false.. Nevertheless, the results may not be correct or reliable. In
particular, it is not clear whether the flux correction or the limitation of the tendencies (which
I would consider of scientifically doubtful justification) are performing the calculations that
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were originally intended. The coupling with the ocean could not be tested at all, because I only
work with echam.
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A.4 cr2010 03 15: Volcanic aerosols (data of

G. Stenchikov)

A.4.1 Original data

The optical properties of volcanic aerosols modify the heating in the stratosphere and have
some influence on the radiation budget in the troposphere. The optical properties of these
aerosols are mainly determined by the size and concentration of sulfuric acid droplets that
form from SO2 gas in the stratosphere. Ash aerosols only contribute to a lesser extent to
the aerosol optical properties of volcanic aerosols and play a role on short time scales of a
few days to weeks only. Since the concentration and size distribution of sulfuric acid droplets
in the stratosphere are determined by complex chemical processes, advective transport, and
sedimentation processes in the stratosphere, the resulting aerosol optical properties are highly
variable in space and time. Nevertheless, due to fast transport in East–West direction, the
optical properties exhibit small variations for different longitudes at the same latitude but vary
strongly with latitude. Therefore, zonal mean values of the optical properties may describe the
effect of volcanic aerosols on the radiation budget with sufficient accuracy. The original data
set was derived from satellite measurements of the aerosol extinction and effective radii of the
Pinatubo eruption retrieved by the Upper Atmosphere Research Satellite (UARS) Stenchikov
et al. (1998) and first applications are described by Stenchikov et al. (2004, 2009). This data
set was then extended to the longer period of 1850 until 1999. It contains monthly mean zonal
averages of the aerosol extinction ζv, the single scattering albedo ωv, and the asymmetry factor
gv as a function of altitude, wavelength, and time. Furthermore, the integral aerosol optical
depth of a column τv is given as a function of wavelength and time. The data set comprises the
years 1850 to 1999. The data are given at 40 different mid-level pressures listed in table A.5
together with the corresponding interface pressures.

The aerosol optical properties are provided at 30 wavelength bands which are listed in table A.6.
We give the index of the corresponding spectral bands in the ECHAM6 radiation code in column
three and four of the table. The definition of wave length bands 29 and 30 is different for the
new data set and the radiation code of ECHAM6.

A.4.2 Preprocessing of original data

In a first step, the data were preprocessed for their later use in ECHAM6using the idl program
prepare volcano.pro. For that purpose, for each year a separate file for solar and thermal
radiation was prepared containing ζv, ωv, gv, τv for the 12 months of that year. The dimensions
of ζv, ωv, gv are time, level, latitude, and wave length, where ζv is given in 1/m. The aerosol
optical depth τv has the dimensions time, latitude, and wave length.

The original data are given for the latitudes between 89◦N and 89◦S on a 1–degree grid. The
“longitude” dimension present in the original files represents the different wave lengths instead.
A linear interpolation to the new latitudes is performed. The new latitudes have to be provided
in a file t${RES}.nc as variable and dimension lat where ${RES} is the spectral resolution of
the new latitudes. In prepare volcano the start year byear, the last year eyear, and the
resolution res have to be set.
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A.4.3 Implementation into ECHAM6

The preprocessed files containing ζv, ωv, gv, τv for the 12 months of each year are read into
ECHAM6 at the initial or resume time step and at every time step of the beginning of a new year.
In each case, the data of December of the previous year and the data of January of the next year
with respect to the actual year are read from the respective files. This means that in addition to
the data of a specific year n the data of the year n−1 and n+1 have to be provided to ECHAM6.
The subprogram read aero volc of module mo aero volc.f90 performs the reading of the
data. The following (simple) interpolations (add op volc of mo aero volc.f90) are performed
in ECHAM6: For each gridbox, the pressure layer of the volcanic aerosol data set is determined
in which the actually given mid–level pressure of ECHAM6 is located. This has to be done for
each gridbox at each time step because the ECHAM6 mid–level pressures depend on geographical
location and time. All pressure levels of the data set have different “pressure thickness”, it
is therefore impossible to determine the layer index by a simple multiplication by the inverse
pressure thickness. Instead, a conditional search algorithm has to be implemented. Since it
is known that the pressure is increasing in ECHAM6 with increasing level index, it is clear that
the pressure layer of the volcanic aerosol data set in which an ECHAM6 mid–level pressure of
level i+ 1 to given level i is located has to have at least the mid–level pressure of the data set
layer in which the ECHAM6 mid–level pressure of level i is located. Therefore, a successive search
algorithm is used (pressure index of mo aero volc.f90). The quantities ζv, ωv, and gv are
then linearly interpolated in time for each ECHAM6 grid box selecting the respective layer of the
volcanic aerosol data set. The total column optical depth τv is also interpolated with respect
to time. The very crude vertical “interpolation” of the extinction coefficient yields an integral
value

τ (int) :=

nlev∑
j=1

ζ
(int)
v,j ∆zj

of the interpolated aerosol extinctions ζ
(int)
v with nlev being the number of pressure layers in

ECHAM6 and (zj)j=1,nlev
their respective geometric thickness, that is different from the given τv of

the volcanic aerosol data set in general. This interpolation error is corrected by a normalization
of the extinction with respect to τv leading to the following layer dependent aerosol optical depth
τ

(e)
v in ECHAM6:

τ
(e)
v,j = ζ

(int)
v,j ∆zjτv/τ

(int), j = 1, nlev

This simple method may lead to a considerable distortion of the vertical distribution of the
extinction if these are given on a much finer vertical grid in the volcanic aerosol data set com-
pared to the vertical resolution of ECHAM6. Currently, this is not the case. For the interpolated
quantities ω

(int)
v and g

(int)
v no correction is possible.

Finally, the interpolated aerosol optical properties are added to the given aerosol optical
properties (τa,j)j=1,nlev

, (ωa,j)j=1,nlev
, and (ga,j)j=1,nlev

using the usual weighted mean formu-
lae (add aop volc of mo aero volc.f90):
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Solar radiation:

τj := τa,j + τ
(e)
v,j

ωj :=
τa,jωa,j + τ

(e)
v,jω

(int)
v,j

τj

gj :=
τa,jωa,jga,j + τ

(e)
v,jω

(int)
v,j g

(int)
v,j

τjωj

Thermal radiation:
τj = τa,j + τ (e)

v (1− ω(int)
v )

A.4.4 Results

In figure A.11, we present the aerosol optical properties (extinction coefficient, single scattering
albedo, and assymmetry factor) of band 4 (ECHAM6 band 10 of solar radiation) of the original
data and after interpolation in ECHAM6. This spectral band corresponds to green light of 530 nm.
The original data of Stenchikov were interpolated in time to the exact date of 1991–09–01,
00:52:30h at which the first radiation calculation of the test simulation takes place. Deviations
of the ECHAM6 data from the original values are generally small and only occur where extreme
changes of the gradients are found although the interpolation in altitude is very primitive.
In Fig. A.12, we present the extinction coefficient ζv at 13240 nm in the thermal radation regime.
As for the solar radiation, the differences between the original data and the data interpolated
by ECHAM6 are small despite the simple interpolation with respect to altitude. We conclude
that the simple interpolation provides sufficient accuracy even in the relatively coarse T31L39
ECHAM6 resolution.
We performed a simulation for the whole year 1991 and analyse the instantaneous radiative
effect of the combined tropospheric and stratospheric aerosols. In this case, the action of the
stratospheric aerosols on the radiation contains the complete effect of the Pinatubo eruption.
Because these aerosols are located in the stratosphere, their effect is barely obscured by the
effect of the tropospheric aerosols by scattering effects in a column. In figure A.13, the effect of
the aerosols on the heating rates is shown. The mean heating rate anomaly for August 1991, the
second month after the eruption of Mount Pintubo, exhibits a maximum heating rate anomaly
of about 0.22 K/d between 30 and 50 hPa due to thermal radiation and up to 0.1 K/d between
10 and 20 hPa due to solar radiation. The maximum heating rate anomaly due to solar radiation
is about 20 % lower and shifted to higher altitudes than the one that was obtained in (Thomas,
2007, p. 42) using the modified ECHAM5. The maximum of the heating rate anomaly due to
thermal radiation is at a similar location in our new simulation compared to (Thomas, 2007,
p. 22) but has a value that is about 45 % higher. Note that the maximum of the heating rate
anomalies is in all cases located in the southern hemisphere at about 10◦S due to transport of
the SO2 gas after the eruption. The time evolution of the heating rate anomalies at 2◦N shows
that the maximum effect at this latitude is in September/October.
In figure A.14, we present the radiation flux anomalies. The thermal radiation is negative
since it radiates from the surface of the earth into space. The aerosols being colder than the
surface of the earth absorb some of the outgoing radiation, so that the radiation flux is less
negative where aerosols are. Therefore, the anomaly is positive and more energy remains in
the atmosphere. Nevertheless, the effect is small and reaches 3 W/m2 in August and (under
all sky conditions) 4 W/m2 for the zonal average at 2◦N in September/October. The impact
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Figure A.11: Volcanic aerosol optical properties at solar wavelengths for 1991–09–01,
00:52:30h. Top: Zonal mean of original extinction coefficient by Stenchikov (left) and after
interpolation in ECHAM6 (right). Vertical profile at 2◦N (left) and 27◦N (right) of the extinction
coefficient ζv (2nd line), of the single scattering albedo ωv (3rd line), and of the asymmetry
factor gv (bottom). The original values are represented by curves in red, ECHAM6 values are in
black. All optical properties are shown for green light (530 nm).
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Figure A.12: Volcanic aerosol optical properties at thermal wavelengths for 1991–09–01,
00:52:30h. Top: Zonal mean of original extinction coefficient by Stenchikov (left) and after
interpolation in ECHAM6 (right). Vertical profile at 2◦N (left) and 27◦N (right) of the extinction
coefficient ζv (bottom). The original values are represented by curves in red, ECHAM6 values are
in black. The optical properties are shown for light of a wave length of 13240 nm.
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Figure A.13: Monthly average of the heating rate anomalies (forcing) due to aerosols for
thermal radiation (left) and solar radiation (right). The zonal average of the August mean is
presented at top, the time evolution of the zonal average at 2◦N is presented in the bottom
row.
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of the aerosols on the solar radiation is larger and reaches -15 W/m2 under all sky conditions
at 2◦N in late 1991 cooling the surface of the earth.
We conclude that the introduction of the new volcanic aerosol data set leads to a probably too
high temperature response on the Pinatubo eruption of 1991, but further ensemble simulations
are necessary to confirm this hypothesis.

A.4.5 Remark

The simulations presented in this document were performed with ECHAM6 revision 1964. For
this version, excessively high precipitation over the land masses in the tropics was detected.
There are some hints that this may be a consequence of certain optimizations of the code in the
radiation part. It does therefore not make sense to investigate the effect of the aerosols further
until this problem is not fixed.
In order to quantify the temperature effect, ensemble runs would be necessary. Preferably,
these should be performed in a higher resolution of at least T63 and would ideally lead to some
scientific results.
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Figure A.14: Radiation flux forcing due to aerosols for thermal radiation (top four panels)
and solar radiation (bottom four panels). Clear sky conditions at left, all sky conditions at
right. We show the zonal average of August mean values in the first and third row, the time
evolution at 2◦N in the second and fourth row. Note that the vertical coordinate is model level
interfaces.
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Table A.5: Pressure levels, mid level pressures (top), pressure at interfaces (bottom) in Pa

1 3 7 13 22
0 2 2 4 4 10 10 16 16 28

35 52 76 108 150
28 42 42 62 62 90 90 126 126 174

207 283 383 516 692
174 240 240 326 326 440 440 592 592 792

922 1224 1619 2133 2802
792 1052 1052 1396 1396 1842 1842 2424 2424 3180

3670 4793 6236 8066 10362
3180 4160 4160 5426 5426 7046 7046 9086 9086 11638

13220 16748 21059 26192 32082
11638 14802 14802 18694 18694 23424 28960 28960 28960 35204

38675 45908 53672 61799 70056
35204 42146 42146 49670 49670 57674 57674 65924 65924 74188

78139 85673 92219 97287 100368
74188 82090 82090 89256 89256 95182 95182 99392 99392 101344
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Table A.6: Wavelength bands for optical properties of volcanic aerosols in nm

band index λv/nm ECHAM6 band
11 00200 – 000263 solar 13
12 00263 – 000345 solar 12
13 00345 – 000442 solar 11
14 00442 – 000625 solar 10
15 00625 – 000778 solar 19
16 00778 – 001242 solar 18
17 01242 – 001299 solar 17
18 01299 – 001626 solar 16
19 01626 – 001942 solar 15
10 01942 – 002151 solar 14
11 02151 – 002500 solar 13
12 02500 – 003077 solar 12
13 03077 – 003846 solar 11 thermal 16
14 03846 – 012195 solar 14
15 03333 – 003846 —
16 03846 – 004202 thermal 15
17 04202 – 004444 thermal 14
18 04444 – 004808 thermal 13
19 04808 – 005556 thermal 12
20 05556 – 006757 thermal 11
21 06757 – 007194 thermal 10
22 07194 – 008474 thermal 19
23 08474 – 009259 thermal 18
24 09259 – 010204 thermal 17
25 10204 – 012195 thermal 16
26 12195 – 014286 thermal 15
27 14286 – 015873 thermal 14
28 15873 – 020000 thermal 13
29 20000 – 040000 thermal 12
30 40000 – 250000 thermal 11
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A.5 cr2010 04 01: Variable solar irradiance

The total solar irradiance Ψ of the earth is defined as the incoming solar energy at the top of the
atmosphere per area, normed to a sun–earth distance of 1 astronomical unit, and integrated over
the whole range of wavelengths [0,∞ [ (units: W/m2). The solar irradiance λ 7→ ψ(λ) is the
incoming solar energy at the top of the atmosphere per area and wavelength of electromagnetic
radiation, also normed to a sun–earth distance of 1 astronomical unit (units: W/m2/nm).
Solar irradiance ψ and therefore Ψ vary with time. The variation patterns depend on the wave
length and are therefore different for the various spectral bands of ECHAM6. For the old 6–band
radiation scheme, only the total solar irradiance Ψ was prescribed and the distribution onto
the spectral bands was fixed. This means that for a spectral band [λ1, λ2], the incoming energy

ψλ1,λ2 :=

λ2∫
λ1

ψ(λ) dλ

was determined from fixed fractions ξλ1,λ2 := ψλ1,λ2/Ψ by ξλ1,λ2Ψ. For the new 14–band srtm
radiation scheme, the incoming solar irradiance of each band ψλ1,λ2 can vary independently.

A.5.1 Data for solar irradiance

We report on the data sets for ψλ1,λ2 in table A.7. The values for the original srtm scheme
(labelled srtm in table A.7) do not give good results for climate simulations. In the case of
amip-style runs, it is better to use the average solar irradiance of the years 1979–1988 (amip in
table A.7). For pre-industrial times, the average of the years 1844–1856 is available (preind in
table A.7).
For the period from 1850 until 2008, it is possible to use the exact solar irradiance of the
respective years. The respective monthly averages for the years 1850–2008 are stored in yearly
files swflux 14band yyyy.nc, yyyy being the year. These files contain the monthly mean
values of Ψ as TSI and ψλ1,λ2 as SSI in W/m2. These variables are read into ECHAM6 and
linearly interpolated with respect to time to the actual model time. The solar irradiance data
for each band must be stored in exactly the same order as they are defined in ECHAM6.

A.5.2 Implementation

For reading and interpolation of the solar irradiance data of the period 1850–2008, a new module
mo solar irradiance.f90 was created. The subroutine su solar irradiance is called in
setup radiation and allocates memory. In ECHAM6, two time axis are present: One that gives
the actual date and time at each integration time step s at which the total solar irradiance Ψ
has to be known for the calculation of the heating rates. A second time axis is used for each
time step t for which the radiation calculation has to be performed. Generally, the date and
time of t is in the future with respect to the actual date and time of the current time step s. It
may even occur, that the actual time step s differs from t with respect to the year. This means
that the interpolation data on which the interpolation is performed can be the data of different
years for s and t, respectively. For that reason, su solar irradiance allocates memory for
(1) Ψ in tsi containing the total solar irradiance for each model time step s and (2) for Ψ
and ψλ1,λ2 in tsi m and ssi m for the total irradiance and spectrally resolved irradiance for the
radiation calculation time step t, respectively. The subroutines get solar irradiance and
get solar irradiance m are both called by pre radiation, the first being called at every
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time step and reading the respective files at model start/restart or at change of a year. The
second subroutine get solar irradiance m being called at each radiation time step reads in
Ψ and ψλ1,λ2 if the year changes with respect to the previous radiation time step or at model
start/restart.
In revision 1951 of ECHAM6, there was no variable containing the date and time of the last
radiation calculation time step. Therefore, a new variable prev radiation date was added
to mo time control.f90. The variables radiation date and prev radiation date are now
calculated in a separate subroutine radiation time (mo time control.f90). Similarly, the
time weights and indices for the time interpolation of the data to the actual model time
and the time of the radiation calculation are different. The new variables wgt1 m, wgt2 m,

nmw1 m, nmw2 m were added to mo interpo.f90 for the interpolation with respect to the ra-
diation calculation time step. These variables are calculated by the subroutine time weights

(mo time control.f90).
The subroutines set solar irradiance and set solar irradiance m perform the time inter-
polation and applies the Ψ and ψλ1,λ2 in ECHAM6 to the respective date and time. In contrast to
ECHAM6 versions prior to revision 1892, the choice of the solar irradiance now depends on one
single new namelist variable isolrad of namelist radctl. The switch lcouple does not have
an influence on the choice of the solar irradiance any more. The meaning of the different values
of isolrad are listed in table A.8.
The old 6–band scheme uses the respective values of Ψ only for all choices of isolrad.
At model start/restart and at the beginning of each month, the values of Ψ and (if the new
srtm scheme is active) the values of ψλ1,λ2 are printed to the standard (ascii) ECHAM6 output.
Application: The total solar irradiance scaled to the sun–earth distance at radiation time step
Ψ (psctm) is applied in the radiation calculation part; Ψ (solc) is applied in radheat.

A.5.3 Performed tests

Update test: For a fixed solar constant, bit identical results with a previous version were
obtained but a strict update test is not possible.
nproma and parallel test: The nproma (nproma = 23 and 17) and the parallel test on one
and two processors over 12 time steps was passed by revision 1892 with isolrad = 1 and 2. It
was tested that the model works with the old radiation scheme with isolrad = 1.
rerun test: The rerun test is performed starting the model at 1999-12-31, 22:00:00h and
writing restart files at the end of the day. The simulation is run for a total of 12 time steps. In
another simulation, a restart is performed and run until the 12 time steps are completed. The
time steps after restart of these two simulations are compared. The test was passed with bit
identical results.
The nproma, parallel and rerun tests were also passed using the old radiation (l srtm =
l lrtm = .false.)
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Table A.7: ψλ1,λ2 in W/m2 as defined for the original srtm radiation scheme (srtm), for the
preindustrial period (preind), and the amip period (amip). The resulting total solar irradi-
ance (solar constant) Ψ is 1368.222 W/m2 for the original srtm scheme, 1360.875 W/s2 for the
preindustrial period, and 1361.371 W/m2 for the amip period.

band/nm 3077 –03846 2500 –03077 2151 –02500 1942 –02151
index 1 2 3 4

ψλ1,λ2 (srtm) 012.10960 020.36510 023.72970 022.42770
ψλ1,λ2 (preind) 011.95000 020.14610 023.40300 022.09440
ψλ1,λ2 (amip) 011.95050 020.14770 023.40390 022.09460

band/nm 1626 –01942 1299 –01626 1242 –01299 0788 –01242
index 5 6 7 8

ψλ1,λ2 (srtm) 055.62660 102.93200 024.29360 345.74200
ψλ1,λ2 (preind) 055.41680 102.51200 024.69540 347.47200
ψλ1,λ2 (amip) 055.41400 102.51300 024.69810 347.53600

band/nm 0625 –00788 0442 –00625 0345 –00442 0362 –00345
index 9 10 11 12

ψλ1,λ2 (srtm) 218.18700 347.19200 129.49500 050.15220
ψλ1,λ2 (preind) 217.22200 343.28200 129.30000 047.07620
ψλ1,λ2 (amip) 217.29200 343.42200 129.40300 047.14260

band/nm 0200 –00263 3846 –12195
index 13 14

ψλ1,λ2 (srtm) 003.07994 012.88940
ψλ1,λ2 (preind) 003.17212 013.18070
ψλ1,λ2 (amip) 003.17213 013.18080

Table A.8: New namelist variable isolrad of radctl name list and its meaning

isolrad explanation
0 (default) use of the original srtm spectrally resolved solar constant
1 time dependent spectrally resolved solar constant read from files
2 spectrally resolved solar constant for preindustrial period
3 spectrally resolved solar constant for amip runs
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A.6 cr2010 04 08: 3d–ozone climatology

A.6.1 Description of data

The ozone data set was constructed by AC&C and SPARC for CMIP5 simulations without
interactive chemistry. The ozone data are constructed from satellite (SAGE I and II) and
radiosonde data for the stratosphere and model data (CAM3.5 and NASA-GISS PUCCINI) for
the troposphere. A short description of the construction is given on:
http://www.pa.op.dlr.de/CCMVal/AC&CSPARC O3Database CMIP5.html

(cf. DOCS/ACCSPARC O3Database CMIP5 2009-10-04.pdf for version of 2009-10-04)
Original data (RAW DATA 2009-09-25) exist only up to 1 hPa. In order to be usable for
high top models the dataset was extended upward by Chris Bell (University of Reading;
RAW DATA 2010-03-30). In order to be suitable for echam6, Hauke Schmidt has further
processed the data set.
The resulting 3–dimensional ozone data for the years 1850–2008 are given as monthly mean
values on 39 pressure levels which are listed in Table A.9. The data are organized in yearly files
T31 ozone CMIP5 yyyy.nc where yyyy represents the respective year between 1850 and 2008.
These files contain the pressure levels in the variable plev and the ozone volume mixing ratio
in the variable O3.

Table A.9: Pressure levels in Pa of ozone climatology

000001 000003 000005 000010 000020 000030 000050 000100
000150 000200 000300 000500 000700 001000 001500 002000
003000 005000 007000 008000 010000 015000 020000 025000
030000 040000 050000 060000 070000 085000 100000

A.6.2 Implementation

The data are read by the subroutine su o3clim 4 of mo o3clim.f90 at the beginning of each
simulation year. In addition to the data of the actual simulation year, the data of the next and
previous year have to be provided for time interpolation. The generic file names are ozonyyyy
where yyyy is the respective year.
At 2010-04-06, interpolation to the exact time of the radiation calculation time step using
wgt[12] m and nmw[12] m was introduced into revision 1955. This leads to slight differences
in the results because of a slight shift in the date and time of the ozone data used in echam6.
The results shown in this documentation are those of the revisions before revision 1955.

A.6.3 Usage of 3d ozone climatology

The data files containing the data of the respective years yyyy have to be linked to the files
ozonyyyy. The switch io3 in the radctl name list has to be set to 4:
&radctl

io3 = 4

A.6.4 Performed tests

Update test: For io3 = 3 (default), bit identical results were obtained over 12 time steps.
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nproma and parallel test: The nproma (nproma = 23 and 17) and the parallel test on one
and two processors over 12 time steps was passed by revision 1899 with io3 = 3 and 4. No
rerun test was performed.

Figure A.15: Difference in percent between the ozone mass mixing ratio in the model and
the climatology at 150 hPa, 1st June 1991 (top). Ozone profile at 169◦E and 9◦N over the full
altitude (left) and a detail (right). The ozone profile of the model is black, the values of the
climatology are presented in red. Near 150 hPa, the difference between model and climatology
is near 100%.

The resulting mass mixing ratio yO3 in echam6 (left) and the original mass mixing ratio of the
climatology (right) are presented in figure A.16 for the 1st June 1991. The original data were
interpolated to this date, the model data were interpolated to the corresponding pressure levels
of the climatology.

There is a small difference in the ozone mass mixing ratios at 20 hPa. This difference
(cf. fig. A.15) is even larger at 150 hPa, where a strong gradient with respect to altitude makes
interpolation difficult. The deviation has its origin in the various interpolation procedures: (1)
Time interpolation: For the comparison, the climatological data where linearly interpolated
beween May and June with a weight of 0.5 for having roughly the same date as in the model
output. The original climatology is considered to be for the middle of each month and a lin-
ear time interpolation is performed in the model, but with the exact numbers of days giving a
slightly higher weight to the June values than the May values for the 1st of June in the test sim-
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ulation. Nevertheless, this is not the main reason for the differences. (2) Height interpolation:
The original ozone module, performs an interpolation of ozone values with respect to altitude
using running integrals over the column and normalization of the ozone in this column to the
climatological column integral. The ozone values are written to the output on model levels.
The results are then interpolated to the 20hPa pressure level. In the case of steep gradients
with altitude, this may contribute to errors in the interpolation for the presentation of data,
but this error is not in the model itself. In fig. A.15 we present the ozone profile that results
from the model when interpolated to the pressure levels of the climatology and the profile of
the climatology at the same time and geographical location. The overall agreement is excellent
(left panel of fig. A.15), nevertheless the detailed plot on the right of fig. A.15 shows that the
model (black line) cannot represent the very sharp curvature of the climatology (red).
The meridional slice (third row of Fig. A.16) and the zonal average (bottom of the same figure)
exhibit both very similar values in both the echam6 model and the climatology. The black
regions are those at which now values are available in echam6 (left column) due to the surface
orography.
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Figure A.16: Ozone mass mixing ratio of echam6 (left) and original climatology (right)
interpolated to 1st June 1991. Maps at 20 hPa (top), 500 hPa (second row), meridional slice
at 0◦E (third row), and a zonal average (bottom) is shown.
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A.7 cr2010 05 10: Diagnostic of instantaneous radiative

aerosol forcing

A.7.1 Definitions and equations

Aerosols and the chemical composition of the atmosphere have an impact on the energy balance
of the atmosphere and change the radiative fluxes of incoming and outgoing electromagnetic
radiation. We are interested in the sensitivity of the energy balance to changes in the aerosol
content or chemical composition of the atmosphere. In general, we investigate the effects of
changes in the aerosol content or chemical composition of the atmosphere. Since the effects are
small or of the same order as the variability of energy fluxes, it is difficult to compare the energy
fluxes or heating rates of two simulations A and B with different aerosol content or chemical
composition of the atmosphere. The weather trajectory of simulation A will become the more
and more different from that one of simulation B if we move on from a common starting point
in time. Time consuming ensemble runs and a statistical analysis of the results would be
necessary in order to detect the effect of changes in aerosol content and chemical composition
of the atmosphere and its statistical significance. Nevertheless, this is the only method with
which the integral effect of changes in the aerosol content or chemical composition on the
heating rates and radiation fluxes can be assessed with all feedbacks included.
In many cases, the instantaneous radiative forcing and instantaneous heating rate are used
instead of differences in the radiation fluxes and heating rates between ensembles of simulations.
The advantage is that the instantaneous forcing can be calculated easily, but does not contain
any feedback effects of atmosphere dynamics. More precisely, we denote the net short wave
radiation flux under clear sky conditions by F>sw,clear at the top any model layer and by F⊥sw,clear

at the bottom of this layer. Similarly, we symbolize the net short wave radiation flux under
all sky condition at the top of any model layer by F>sw,all and by F⊥sw,all at its bottom. The

corresponding quantities for thermal radiation are denoted by F>lw,clear, F
⊥
lw,clear, F

>
lw,all, and

F⊥lw,all, respectively. A superscript 0 is added if these quantities are meant for an atmosphere

free of aerosols: F>,0sw,clear, F
⊥,0
sw,clear, F

>,0
sw,all, F

⊥,0
sw,all, F

>,0
lw,clear, F

⊥,0
lw,clear, F

>,0
lw,all, F

⊥,0
lw,all.

We diagnose the 3–dimensional instantaneous net radiative forcing for solar and thermal radi-
ation separately defined by the quantities F>sw,clear−F

>,0
sw,clear and F>lw,clear−F

>,0
lw,clear for clear sky

conditions and by F>sw,all − F
>,0
sw,all and F>lw,all − F

>,0
lw,all for all sky conditions at each model layer

interface. For convenience, we wrote the formula for the upper interface of any model layer
only.
The heating rates are calculated in the following way. We consider a layer of the atmosphere
that absorbs electromagnetic radiation and transforms it into heat. A radiative flux entering
the layer at the top looses energy on its way through the layer and a smaller radiative flux
is detected at the bottom of the layer. The energy difference is transformed into heat. The
heating rate T ′ is determined by the rate of energy ∆P := F> − F⊥ that is transformed into
heat in the layer. The heating itself is a process at constant pressure in the atmosphere and
is determined by the heat capacity of air. We assume the air to be an ideal mixture of gases
with inner degrees of freedom. This means that the heat capacity can be approximated by the
weighted sum of the molar heat capacities of dry air cdry

p and the molar heat capacity of water
vapour cq

p using the mole fractions of dry air xdry and water vapour xq of air:

cp = xdryc
dry
p + xqc

q
p (A.6)

In general, the heat capacity is temperature dependent because of different excitations of the
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inner degrees of freedom in the molecules. Nevertheless, the heat capacity of dry air varies only
a few percent in the tropopsphere or stratosphere due to temperature changes. It is therefore
a good approximation to assume a constant heat capacity throughout the atmosphere in these
atmospheric regions. With this approximation, the heating rate of n = ndry +nq moles of moist
air with a mole fraction of xq of water vapour in a column of area A, satisfies the following
equation:

∆P = ncpT
′/A (A.7)

Introducing equation (A.6) into (A.7) and using the definition of ∆P , we obtain T ′ = (F> −
F⊥)/

(
ndry(xdryc

dry
p + xqc

q
p) + nq(xqc

q
p + xdryc

dry
p )
)
/A

The amount of water vapour nq in the air is small compared to ndry everywhere. Therefore, the
expressions involving nq can be neglected. The amount of dry air ndry per area A is determined
by the pressure p> and p⊥ at the top and the bottom of the column: ndry/A = (p⊥−p>)/(gM)
where g is the earth acceleration and M the molar mass of dry air. Finally, we obtain

T ′ = (F> − F⊥)
gM

(p⊥ − p>)(xdryc
dry
p + (1− xdry)cq

p)
(A.8)

We can define a conversion factor

ch :=
gM

(p⊥ − p>)(xdryc
dry
p + (1− xdry)cq

p)
(A.9)

and obtain for the heating rates with and without aerosols:

T ′sw := (F>sw,all − F⊥sw,all)ch

T ′lw := (F>lw,all − F⊥lw,all)ch

T ′
0
sw := (F>,0sw,all − F

⊥,0
sw,all)ch

T ′
0
lw := (F>,0lw,all − F

⊥,0
lw,all)ch

From these quantities, we obtain the heating rate forcing or heating rate anomalies ∆T ′sw and
∆T ′lw for solar and thermal radiation:

∆T ′sw := T ′sw − T ′
0
sw (A.10)

∆T ′lw := T ′lw − T ′
0
lw (A.11)

A.7.2 Implementation

The above quantities are calculated in subroutines of a separate module. This has the ad-
vantage that the interference with the original ECHAM6 code is minimal. The new module
mo radiation forcing.f90 contains the following subroutines:

construct forcing: called in mo memory streams.f90. Creation of a new output stream
forcing for the output variables listed in table A.10.
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prepare forcing: called in mo radiation.f90. The solar radiation fluxes are normalized to
unit solar irradiance in this subroutine since they are calculated for the radiation time
step that is different from the actual ECHAM6 time step in general. When the fluxes are
used, they are scaled to the solar irradiance of the actual time step.

calculate forcing: call in radheat.f90. Calculation of the quantities listed in table A.10.

Table A.10: Output variables of stream forcing. All quantities are mean values over the
output intervall.

quantity variable name unit code number

F>sw,clear − F
>,0
sw,clear d aflx swc W/m2 16

F>sw,all − F
>,0
sw,all d aflx sw W/m2 15

F>sw,clear − F
>,0
sw,clear top of atmosphere FSW CLEAR TOP W/m2 11

F⊥sw,clear − F
⊥,0
sw,clear bottom of atmosphere FSW CLEAR SUR W/m2 13

F>sw,all − F
>,0
sw,all top of atmosphere FSW TOTAL TOP W/m2 12

F⊥sw,all − F
⊥,0
sw,all bottom of atmosphere FSW TOTAL SUR W/m2 14

∆T ′sw netht sw K/d 17

F>lw,clear − F
>,0
lw,clear d aflx lwc W/m2 26

F>lw,all − F
>,0
lw,all d aflx lw W/m2 25

F>lw,clear − F
>,0
lw,clear top of atmosphere FLW CLEAR TOP W/m2 21

F⊥lw,clear − F
⊥,0
lw,clear bottom of atmosphere FLW CLEAR SUR W/m2 23

F>lw,all − F
>,0
lw,all top of atmosphere FLW TOTAL TOP W/m2 22

F⊥lw,all − F
⊥,0
lw,all bottom of atmosphere FLW TOTAL SUR W/m2 24

∆T ′lw netht lw K/d 27

A.7.3 Usage

A new namelist variable LOGICAL :: lradforcing(2) was added to the radctl namelist.
lradforcing(1)=.TRUE. or .FALSE. switches on/off the calculation of the shortwave instan-
taneous aerosol forcing, lradforcing(2)=.TRUE. or .FALSE. is the switch for the long wave
radiative forcing. The output is in the separate stream forcing the output frequency of which
is the same as for the standard output echam.
In table A.10, a list of the variable names and the code numbers is given. The code numbers
are arbitrary and may interfere with existing code numbers.

A.7.4 Performed tests

A.7.4.0.1 Tests on the calculation of instantaneous aerosol radiative forcing
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1. Being all aerosols switched off, all aerosol forcing quantities are zero.

2. If the atmosphere is cloud free (beginning of simulation), the total sky and clear sky
forcings are equal.

3. The extra variables for forcing at the top of the atmosphere and surface give identical
results compared to the corresponding levels of the 3d–forcing variables.

A.7.4.0.2 General tests The model passes the update test, meaning that the echam re-
sults are not changed by the use of this diagnostic. The model also passes the nproma (=17,
23) and the parallel (1 and 2 processors) tests for 12 time steps and the rerun test (start:
1999-12-31, 22:00:00, rerun at midnight, four further time steps, including the new forcing

stream).
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A.8 cr2010 07 28: Calculation of mean values

In simulations of the general circulation of the atmosphere, the calculation of mean values over a
certain period of time (days, months, years) is of particular interest in order to characterize such
a period by a largely reduced amount of data compared to the full time series of instantaneous
values. Depending on the purpose one may not want to calculate the mean values using the
data given at the model output interval only but by using all available time steps during the
integration. However, the choice of the times over which the mean values are taken may largely
influence on the results. For illustration, let’s consider a rather extreme example. Let’s assume
that you want to calculate the monthly mean value of the concentration of the OH radical on
the earth’s surface and you try to do this by determining the arithmetic mean value over 24
hourly instantaneous values given at 12:00h UTC time at each grid point on the earth. In
this case, the resulting mean value will show a maximum somewhere at 0 degree longitude
because the lifetime of OH is very small (of the order of a few minutes in maximum) and its
formation is fastest where radiation is highest. Consequently, this method of calculating the
monthly mean of OH concentration is inappropriate for determining the average concentration
of OH. A much better method would be to calculate the mean value using all the instantaneous
concentrations determined at each integration time step. On the other hand, there may be
examples for which the latter method is inappropriate: Whenever you want to compare your
results against the monthly mean value of measurements that take place every day at 12:00h
UTC time for example. In this case, the first method would be the correct one to get values
of your simulation that allow you the comparison with the mean value over measurements at
12:00h UTC time.
The purpose of the module described hereafter is the calculation of mean values by forming
an arithmetic average over all instantaneous values occuring during the integration process.
The corresponding variables can be specified in a namelist. A prerequisite is that all these
variables are either “tracers” or members of a “stream”. For each variable it is possible to
output only the mean values or both, instantaneous and mean values. It is also possible to
calculate mean values over the square of variables for allowing an estimation of the standard
deviation afterwards.

A.8.1 Numerical Method

Let (Xi)
N
i=1 be the instantaneous values of a certain variable X at times (ti)

N
i=0 for some integer

N > 0. The times (ti)
N
i=0 do not necessarily have to be equally spaced. Then, the mean value

X of X is defined as

X =

(
N∑
i=1

Xi(ti − ti−1)

)
/(tN − t0). (A.12)

Similarly, the mean of the square X2 of X is defined as

X2 =

(
N∑
i=1

(Xi)
2(ti − ti−1)

)
/(tN − t0). (A.13)

In the numerical procedure, time is given in seconds. The sum is calculated first, the division
by tN − t0 only takes place at the moment when the output is written. Nevertheless, even in
rather extreme cases, severe numerical problems should not occur. To illustrate this let X be
of the order of 1012 and let’s assume that we want to calculate a mean value over one year.
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Such high values of X may occur when your tracer concentration is defined as particle number

per unit volume. In a 365 day year the sum
N∑
i=1

(Xi)
2(ti− ti−1) will be of the order of 3.2× 1031

irrespective of the chosen integration time step. Adding to such a number the result of a new
time step that is for a 20 minute time step of the order of (1012)2 × 1200 = 1.2 × 1027 results
in a loss of four digits in accuracy which should be negligible compared to the about 14 digits
of double precision accuracy.

From X and X2 the standard deviation sX of the mean value can be estimated by

sX =

√
(X2 −X2

)/(N − 1) (A.14)

Let us finally consider another important example of mean value calculation. In atmospheric
chemistry studies, it is a tradition to use volume mixing ratios as a concentration measure for
most of the species with exception of OH. In general, the OH concentration is given in molecules
per cm3. The OH concentration will be denoted by cOH. Let xOH be the volume mixing ratio
of OH, kB = 1.38066 · 10−23J/K, T the temperature (in Kelvin), and p the pressure in a certain
grid box. Then, we have

cOH =
1

kB

( p
T
xOH

)
· 10−6 m3

cm3
(A.15)

When we like to calculate a mean value, we may be tempted to insert the mean values T , p,
and xOH into equation (A.15). Even if p, T , and xOH were independent random variables, this
would be wrong due to Jensen’s inequality giving the following estimation for 1/T :

1/T ≤ 1/T (A.16)

The deviations between

cOH =
1

kB

( p
T
xOH

)
(A.17)

and

cOH
′ =

1

kB

(
p

T
xOH

)
(A.18)

are likely to reach a few percent. Therefore, it is preferable to define a new diagnostic variable
cOH according to equation (A.15) the mean value of which is then given by equation (A.17) and
not by eq. (A.18).

On the other hand, it is save to calculate mean values of so–called spectral variables and to
apply the transformation to grid point space on mean spectral coefficients in order to get the
time average in grid point space. Let Xi be a variable such that

Xi =
L∑
l=0

l∑
m=−l

(xml )iY
m
l (A.19)

where L > 0 is the spectral truncation (e.g. 63 for the T63 resolution), Y m
l are the spherical har-

monics and (xml )i are the expansion coefficients. We insert this relationship into equation (A.12)
and obtain:
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X =

(
N∑
i=1

Xi (ti − ti−1)

)
/ (tN − t0) =

(
N∑
i=1

L∑
l=0

l∑
m=−l

(xml )iY
m
l (ti − ti−1)

)
/ (tN − t0)

=
L∑
l=0

l∑
m=−l

(
N∑
i=1

(xml )i (ti − ti−1)

)
/ (tN − t0)Y m

l =
L∑
l=0

l∑
m=−l

(xml )Y m
l

(A.20)

However, it is not possible to get an easy relationship between the mean of the squares of
spectral expansion coefficients and the mean of the square of the variable in grid point space
as it becomes evident from equation (A.19):

(Xi)
2 =

(
L∑
l=0

l∑
m=−l

(xml )iY
m
l

)2

This equation involves many cross terms of coefficients with different indices l,m, all weighted
with the spherical harmonics. We conclude that time averages of “spectral variables” may be
calculated using the mean values of the spectral coefficients, but it is impossible to calculate
their standard deviations from the knowledge of the spectral coefficients alone.
There is one exception: Since the spectral coefficient associated with Y 0

0 is normalized in such
a way that it is equal to the global average of this variable, the time average of a global mean
and the time average of the square of a global mean can both be calculated in spectral space.
There is another important aspect that has to be taken into account when statistical quantities
are considered: In the estimation of a standard deviation and its interpretation, it is impor-
tant to make sure that the statistical sample is independent. If a meteorological quantity is
considered as a random variable and its trajectory as a realisation of a stochastic process, the
stochastic process may be something like a Brownian motion. Since this is not the case, the
“degrees of freedom” have to be reduced in the estimates of standard deviations. In order to do
this, the autocorrelation function has to be estimated (e.g. from 6–hourly output) and taken
into account.

A.8.2 Usage of Mean Value Stream

A.8.2.1 Specifying Mean Value Streams

Technically, the mean value calculation is controlled by the namelist group MVSTREAMCTL that
is read together with the other ECHAM6 namelist groups from the file namelist.echam. In
table A.11, all namelist variables of MVSTREAMCTL are listed.

Table A.11: Namelist mvstreamctl

Variable Type Explanation Default

table continued on next page



A.8. CR2010 07 28: CALCULATION OF MEAN VALUES 199

Table A.11: mvstreamctl — continued

filetag character(len=7) The averaged variables of
each stream listed in source

will be written to the same
outputfile with ending tag
filetag. If filetag is not
present, the names of the
streams are used as filetags
and possibly more than one
file will be created.

target

interval special time averaging interval The default
depends on
the setting of
default output

in runctl: For
default output=

.false.:
interval=putdata;
for
default output=

.true.:
interval=

1,’months’,

’first’,0

meannam(500) character(len=64) variable names of stream el-
ements of which time aver-
age is desired. If source

contains more streams than
one, the program stops if
the variables are not con-
tained in every of these
streams. In that case, spec-
ify mvstreamctl for each
stream separately. Vari-
ables that are not either
spectral or 2d or 3d grid
point variables are skipped.
If meannam is not speci-
fied or equal to ? or ’’, all
variables of the respective
stream(s) are averaged.

’’

table continued on next page



200 APPENDIX A. COMPTES RENDUS

Table A.11: mvstreamctl — continued

source(50) character(len=16) A mean value stream will
be created for each stream
listed in source. Per de-
fault, the names of these
replicated streams are the
original names with ap-
pended ’m’. Furthermore,
per default corresponding
outputfiles with these tags
in their names will be cre-
ated. The default can
be changed by the use of
the target and filetag

namelist variables.

’’

sqrmeannam(500) character(len=64) variable names of stream el-
ements of which time aver-
age of their square is de-
sired. Variables that are av-
eraged over the output in-
terval in the original stream
and may only be refer-
enced are excluded. If
sqrmeannam=’?’ the mean
of the square is calcu-
lated of all variables in the
stream. Does work with
several streams in source

’’

target character(len=16) If source contains a single
stream only, you can give a
name to the corresponding
mean value stream by
setting target to a name of
your choice. You can also
define a common ending for
all streams in source by
setting target=∗<ending>.
In that case, the repli-
cate of each original
stream will have the
name <name of original

stream><ending>.

∗m

variables for backward compatibility

table continued on next page
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Table A.11: mvstreamctl — continued

m stream name(1:50)character(len=256) List of names of streams
for the elements of which
mean values shall be calcu-
lated. Note that a maxi-
mum of 50 output streams
is allowed (including the
mean value streams). This
variable can still be used
together with the mvctl

namelist but is included
only for backward compati-
bility. Note that you cannot
set both variables source

and m stream name at the
same time.

’’

Remarks:

target

You may use the renaming of the mean value stream if you want to calculate monthly
and daily means of some variables of the same source stream in one simulation. If you do
not rename at least one of these streams, there will be a naming conflict since the default
would be to name both mean value streams after the source stream with an appended
’m’.

Note: you can specify the mvstreamctl namelist several times for different (sets of)
streams in the same namelist.echam input file.

interval

Because of the time integration scheme used in ECHAM6, there is a particular be-
haviour in calculating the mean values. Let’s assume that you gave interval =

2,’hours’,’first’,0 and that you have a 40 minutes time step. This means that you
have instantaneous values at 00:00h, 00:40h, 01:20h, 02:00h, 02:40h and so forth. The
above setting of interval now causes a mean value over the values at 00:00h, 00:40h,
01:20h for the tracer stream, over the values at 00:40h, 01:20h, 02:00h for all other streams.
When you specify interval = 2,’hours’,’last’,0, the mean values are taken over val-
ues at 00:40h, 01:20h, 02:00h for the tracer stream and at 01:20h, 02:00h, 02:40h for all
other streams. This is due to the organization of the time integration in ECHAM6. In
general, this is not very important for calculating mean values over a month or so.

You should also be careful in changing your mean value calculation interval in combination
with reruns. Assume that you interrupt your model writing rerun files every month but
that your mean value interval is 2 months. Then, between two output intervals of your
mean values, the rerun file for the mean value streams contains the accumulated values of
one month, this means the sum over the instantaneous values multiplied by the time step
length. If you now decide to change to daily meanvalues for example, the large already
over one month accumulated value of each variable is taken, further instantaneous values
accumulated until the end of a day and then this value is devided by the number of
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seconds of the new mean value calculation interval of one day. This means that you will
end up with a erroneous much too high resulting “mean value”.

A.8.2.2 Restrictions

1. In ECHAM6, the current maximum number of streams is 50. Each stream for which you
require a mean value calculation is doubled, so that you have two streams for each one
in the above source list: the original one and the mean value stream. Furthermore, only
30 different (repeated) events are allowed in ECHAM6.

2. Variables all have to be on a Gaussian grid or in spectral space, either two dimensional
or three dimensional. If the variables have the laccu flag set to .true. they are only
referenced if the output interval of the respective mean value stream and the stream of
origin are identical. Otherwise they will be automatically skipped from the list. For
variables that have laccu=.true. in their original stream, no means of the squares can
be calculated.

3. The variable names, full names, and units have to meet length restrictions that are some-
what more restrictive than the normal ECHAM6 restrictions. This is a consequence of the
fact that new names and units are given to the averaged variables. The new names are
chosen as follows

name: The names of mean values (eq. A.12) remain unchanged. For the mean of the
square (eq. A.13) s is added at the end of the variable name. Consequently, if the
mean of the square is desired, the variable name has to be 2 characters shorter than
the allowed maximum specified in ECHAM6.

full name: Same as for name (relevant for tracer stream only).

unit: Units of mean values are unchanged of course, but in the case of mean values of the
square unitchar is replaced by (unitchar)**2 so that units have to be 5 characters
shorter than the maximum allowed by ECHAM6 if mean values of the square are
required.

4. If target is not set, the length of source must allow for an additional ’m’.

5. If filetag is not set, the length of target must not exceed the maximum length of
filetag(len=7).

A.8.2.3 Examples

1. For the calculation of monthly means of all variables in the streams tracer and lght,
and writing the tracer mean values to file tracerm, and the lght mean values to file
lghtm, set:

&MVSTREAMCTL

source = ’tracer’, ’lght’

/
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2. For the calculation of the mean values of the tracers OX, NO, NO2, CO, OH, HO2 and the
corresponding means of the square, set:

&MVSTREAMCTL

source = ’tracer’

meannam = ’OX’, ’NO’, ’NO2’, ’CO’, ’OH’, ’HO2’

sqrmeannam = ’*’

/

3. For the replacement of standard echam output by daily mean values, set:

&RUNCTL

...

default_output = false

putdata = 1, ’days’, ’first’, 0

...

/

&MVSTREAMCTL

source = ’sp’, ’gl’, ’g3b’

filetag = ’echam’

/

In this case, the variables of the g3b stream that are mean values in the original echam
output stream are referenced in the g3bm stream and written to the file echam.

4. Create monthly means and means of squares for 2m temperature and daily means for rela-
tive humidity (both from stream g3b). In that case, you have to specify the mvstreamctl

namelist twice:

&MVSTREAMCTL

source = ’g3b’

target = ’g3b_mon’

interval = 1, ’months’, ’first’, 0

meannam = ’temp2’

sqrmeannam = ’temp2’

/

&MVSTREAMCTL

source = ’g3b’

target = ’g3b_day’

interval = 1, ’days’, ’first’, 0

meannam = ’relhum’

/
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A.8.3 Compatibility with previous versions of Mean Value Streams

A.8.3.1 Backwards compatibility

Before ECHAM6 version 1.03, the namelist group MVSTREAMCTL only defined the source streams,
using m stream name instead of source. Other settings, namely putmean (same as interval),
meannam, and stddev (replaced by sqrmeannam) were to be put into a namelist group MVCTL

stored in a separate namelist file named streamname.nml. For compatibility reasons, these are
still recognised, so old setups will continue to work.
Note though, that if you additionally use the new variables interval or meannam of
MVSTREAMCTL, a warning will appear, and the MVSTREAMCTL settings will override any settings
from streamname.nml to avoid inconsistencies.

A.8.3.2 New features and migration hints

• resulting stream may be renamed by setting target

• file name suffix may be set using filetag; an underscore ( ) is prepended automatically

• to request all variables of a stream, simply omit the meannam element; setting it to an
empty string (”) or ’*’ has the same effect

• for MVSTREAMCTL, stddev has been replaced by sqrmeannam. It takes variable names
instead of numeric flags, to allow for a more direct and – if only a few square means are
needed – a more concise definition of those variables. stddev = -1 is now sqrmeannam

=’*’

The relation between old and new variables in the namelist group mvstreamctl and mvctl is
summarized below.

mvstreamctl (new) mvstreamctl (old) mvctl
source m stream name + ’.nml’ as file names
target m stream name(i) + ’m’
interval putmean
filetag ’ ’ + m stream name(i) + ’m’
meannam meannam
meannam not set, = ”, or = ’*’ meannam = ’all’
sqrmeannam stddev
sqrmeannam = ’var1’, ’var4’, . . . stddev = 1, 0, 0, 1, . . .
sqrmeannam = ’*’ stddev = -1
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A.9 cr2011 01 18: Tendency diagnostic

A new tendency diagnostic was implemented. In this diagnostic, instantaneous values of the
tendency of some grid point variables are written to an outputfile *tdiag*. They can be
averaged during the model run using the mean value stream facility. The diagnostic stream
contains tendencies in grid point space and some atmospheric variables that may be useful for
postprocessing. For a complete list, see table A.12. The temperature tendency due to radiation
that is calculated by radheat is divided into a part from solar radiation (dtdt rheat sw) and
thermal (long wave) radiation (dtdt rheat lw).

Table A.12: Variables contained in the diagnostic stream tdiag. The top row describes the
variables, the first column gives the routine names (processes) producing the tendencies saved
under the names in the corresponding rows. The units of the variables and code numbers are
given in parenthesis.

variable du/dt dv/dt dT/dt dq/dt dxl/dt dxi/dt
(m/s/day) (m/s/day) (K/day) (1/day) (1/day) (1/day)

routine
(process)

vdiff
dudt vdiff dvdt vdiff dtdt vdiff dqdt vdiff dxldt vdiff dxidt vdiff

(code 11) (code 21) (code 1) (code 31) (code 41) (code 51)

radheat
— — dtdt rheat sw (code 62) — — —

— — dtdt rheat lw (code 72) — — —

gwspectrum
dudt hines dvdt hines dtdt hines

— — —
(code 13) (code 23) (code 3)

ssodrag
dudt sso dvdt sso dtdt sso

— — —
(code 14) (code 24) (code 4)

cucall
dudt cucall dvdt cucall dtdt cucall dqdt cucall

— —
(code 15) (code 25) (code 5) (code 35)

cloud — —
dtdt cloud dqdt cloud dxldt cloud dxidt cloud

(code 6) (code 36) (code 46) (code 56)

spectral variables

variable dξ̂/dt dD̂/dt dT̂ /dt
(1/s/day) (1/s/day) (K/day)

routine
(process)

hdiff
dsvodt hdiff dsddt hdiff dstdt hdiff

(code 87) (code 97) (code 7)

atmospheric variables
Box area surface geopotential ln(ps/p	) ps T (t) T (t−∆t)

m2 m2/s2 spectral Pa spectral K

A.9.1 User guide

Switch on the tendency diagnostic by setting ltdiag=.true. in the runctl namelist.
The output frequency of the tendency diagnostic and a selection of tendency variables of ta-
ble A.12 can be chosen by giving them in the namelist tdiagctl which must be present in
the file namelist.echam. If tdiagctl is not present in namelist.echam, the default values
listed in table A.13 are used (echam–6.1.07 or higher). The variables, their default values and
possible settings are all listed in table A.13.
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Table A.13: Namelist tdiagctl

Variable type Explanation default
puttdiag special output frequency of tdiag

stream
6,’hours’,’first’,0

tdiagnam(22) character(len=32) list of keywords describing
the choice of tendency
variables

keyword explanation
’all’ output all ten-

dencies of tdiag

stream
one of

’vdiff’,
’hdiff’,
’radheat’,
’gwspectrum’,
’ssodrag’,
’cucall’,
’cloud’

output all tenden-
cies associated
with
vdiff,
hdiff,
radheat,
gwspectrum,
ssodrag,
cucall,
cloud

one of

’uwind’

’vwind’

’temp’

’qhum’

’xl’

’xi’

of all processes,
output the ten-
dency
du/dt, dξ̂/dt,
dD̂/dt
dv/dt, dξ̂/dt,
dD̂/dt
dT/dt, dT̂ /dt
dq/dt
dxl

dxi

one of the vari-
able names of
the tenden-
cies listed in
table A.12,
e.g. dudt hines

output this
tendency,
e.g. du/dt due to
gwspectrum

The same variable may be
listed several times or may
appear in several groups.

’all’,’end’,...,’end’
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A.9.2 Implementation

The tdiag stream is implemented in mo diag tendency new.f90 containing the following sub-
routines:

init tdiag: Initialization of the tdiag stream, called in init memory

(mo memory streams.f90).

set tendency: This is an overloaded routine to set the tendency variables. To date, only
2d–fields dimensioned by (1:kproma,1:klev) and 3d–spectral fields can be handled,
but it can be extended to fields having different shapes. The specific routine is
set tendency gp2d for 2d–grid point fields and set tendency sp3d for 3d–spectral fields.

Of a certain quantity A, we denote by ∆A
(i)
− the accumulated tendencies over all processes

before a certain process (i). Let the accumulated tendency of A after process (i) be ∆A
(i)
+ .

If there are n processes changing quantity A, we assume that the tendencies are defined
such that

A(t+ ∆t) = A(t) + ∆A
(n)
+ (t)∆t

For i = 1, . . . , n− 1 it holds that ∆A
(i)
+ = ∆A

(i+1)
−

The tendency due to process (i) is then given by

∆A(i) = ∆A
(i)
+ −∆A

(i)
−

In addition, there is the case that routines just give ∆A(i) directly (for grid point
variables). The set tendency routine has therefore a mode parameter that tells the
routine how to set the diagnosed tendency var diag as outgoing variable in terms of
input var tendency (see table A.14).

Table A.14: Mode parameter of subroutine set tendency. The conversion factor d =
86400s/d gives the change ∆A(i) per day.

mode set add sub

set tendency gp2d

var diag= d ∗ var tendency var diag + d ∗ var tendency −d ∗ var tendency

set tendency sp3d

var diag= — var diag + d ∗ var tendency −d ∗ var tendency

A.9.3 Interfaces

Be careful, in these routines, assumed–shape arrays are used. This is done for practical reasons
here but should not be a general practice.

subroutine init tdiag: No arguments
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subroutine set tendency gp2d(var diag, var tendency, kproma, kbdim, klev, mode):
var diag(1:kbdim,1:klev) (inout): stored tendency for output;
var tendency(1:kbdim,1:klev) (in): tendency variable to be written to output;
mode (in): see table A.14.
The arrays are set for (1:kproma,1:klev).

subroutine set tendency sp3d(var diag, var tendency, mode):
var diag(lc%nlev,2,lc%snsp) (inout): stored tendency for output;
var tendency(lc%nlev,2,lc%snsp) (in): tendency variable to be written to output;
mode (in): see table A.14.
The arrays are set for (1:lc%nlev,1:2,1:lc%snsp).
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A.10 cr2011 03 23: Volcanic and stratospheric aerosols

from HAM or by Th. Crowley

In general, there are different data sources for aerosol optical properties of volcanic or strato-
spheric aerosols. There is the standard climatology by Stenchikov that can be used with
iaero = 5 in the radctl namelist, but other data sources are available: (1) simulations of
the formation and spatial distribution of aerosols by the echam–HAM (short: HAM) model
and (2) the long time data record by Th. CrowleyCrowley et al. (2008). All these data are
stored in files of different formats (netcdf or ASCII files) and provide different quantities from
which the actual spatio–temporal distribution of aerosol optical properties has to be derived.
In this document, the implementation and use of aerosol optical properties from echam–HAM
simulations and the volcanic data by Th. Crowley are described.

A.10.1 Volcanic or stratospheric aerosols from HAM

The spatio–temporal resolution of the optical properties of volcanic or stratospheric aerosols
derived from HAM simulations is calculated by the combination of two data sets. (1) The HAM
model provides the aerosol optical depth in each ECHAM model layer at a wave length of 550 nm
τ550 and the effective radius reff of the aerosol particles as monthly mean values. (2) For each
particle radius r and wavelength λ a table that was compiled by S. Kinne provides the ratio
(r, λ) 7→ ξ(r, λ) := ζ(r, λ)/ζ(r, 550) where ζ is the extinction coefficient, the single scattering
albedo (r, λ) 7→ ω(r, λ), and the asymmetry factor (r, λ) 7→ g(r, λ). Since ζ is assumed to be
constant in a model layer, the extinction is proportional to the aerosol optical depth in one
layer. Therefore, the space, time, and wavelength dependent volcanic aerosol optical properties
τv are given for any position ~x in the atmosphere and time t by:

τv(~x, t, λ) = ξ(reff(~x, t), λ)× τ550(~x, r) (A.21)

ωv(~x, t, λ) = ω(reff(~x, t), λ) (A.22)

gv(~x, t, λ) = g(reff(~x, t), λ) (A.23)

The aerosol optical properties of the volcanic or stratospheric aerosols are linearly interpolated
in time and then added to the aerosol optical properties according to the common mixing
rules resulting in the following overall aerosol optical properties τa, ωa, ga. In the case of solar
wavelenghts, the full mixing rules are applied:

τa =
l∑

i=1

τi (A.24)

ωa =

l∑
i=1

ωiτi

τa

(A.25)

ga =

l∑
i=1

giωiτi

τaωa

(A.26)

In the case of thermal wavelengths, only the aerosol optical depth has to be provided, but only
the “absorbence” is taken into account:
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τa =
l∑

i=1

τi(1− ωi) (A.27)

Fig. A.17 shows the contribution of the HAM aerosols to the total aerosol optical depth, the
original data provided by HAM, and the single scattering albedo and asymmetry factor at
550 nm and 11000 nm for end of december in the case of the release of 8 Mt of sulfur as
provided by the data set in 8mt t31l39 zm mm aod ham.nc.
In fig. A.18, we present the aerosol optical properties of all aerosols. In that case the total
aerosol is composed of the tropospheric aerosols climatology provided by S. Kinne, the strato-
spheric volcanic aerosols by G. Stenchikov (of which very little are present end of 1999) and
the 8 Mt release of sulfate aerosols of anthropogenic origin in the framework of a hypotheti-
cal geoengineering experiment. Since the tropospheric and stratospheric aerosols are spatially
rather well separated, the aerosol optical properties in the stratosphere are similar to the aerosol
optical properties of the sole geoengineering aerosols. The single scattering albedo at 550 nm
exhibits lower values in the troposphere than in the case of the stratospheric sulfate aerosols
only since dust and black carbon have radiation absorbing properties.

A.10.2 Volcanic aerosols according to Th. Crowley

The long time data record (790–2010) of optical properties of volcanic aerosols provided by
Th. Crowley Crowley et al. (2008) can also be used in echam6. In that case, no information
about the height distribution of the aerosols is available. Th. Crowley estimated the total
aerosol optical depth at 550 nm for four latitude bands (30◦N – 90◦N, 0◦N – 30◦N, 30◦S – 0◦N,
90◦N – 30◦S). For each of these latitude bands, he also gives an estimate of the effective radius
of the aerosols. These original values for the aerosol optical depth and the effective radius are
linearily interpolated for latitudes in [15◦N, 45◦N [ (between the values for the latitude bands
30◦N – 90◦N, 0◦N – 30◦N), [15◦S, 15◦N [ (between the values for the latitude bands 0◦N – 30◦N,
30◦S – 0◦N), and [45◦S, 15◦S [ (between the values for the latitude bands 30◦S – 0◦N, 90◦N –
30◦S).
Similar to the derivation of the optical properties of volcanic HAM aerosols, we assume that
the volcanic aerosols are sulfate aerosols and use the same wavelength and radius dependence
tables by S. Kinne as in the former case. In addition, we have to assume an altitude profile
of the aerosol optical depth. Since there is no information available and since the altitude
distribution depends on the neutral buoyancy height of the volcanic plume at which the SO2

gas is released into the atmosphere, it is impossible to get accurate altitude profiles based on
the current knowledge of the historic volcanic eruptions. In general, only volcanic eruptions
bringing SO2 into the stratosphere have a potential influence on the climate. This means that
only larger eruptions are important for climate simulations. These are exactly the eruptions
accounted for by Th. Crowley. Furthermore, we know that the neutral buoyancy height is
also limited because of the gravity effect on the plume described by Herzog and Graf (2010);
Timmreck et al. (2009) and by personal communication of H.–F. Graf 2005. From this, we
conclude that the aerosols are located mainly in the stratosphere. The exact altitude position
is not of first order relevance for the radiation budget in the troposphere provided that the
total aerosol optical depth is correct. On the other hand, the influence on the dynamics of the
stratosphere depends on the exact altitude but is not so relevant for simulations with a focus
on the climate. We therefore decided to use an altitude profile that is similar to the injection
height of SO2 as it was observed from satellite after the Pinatubo eruption Sparks et al. (1997).
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The following pressure dependent weight function w is used at all geographical locations:

p 7→ w(p) =
1

4
× 1[30hPa,40hPa[(p) +

1

2
× 1[40hPa,50hPa[(p) +

1

4
× 1[50hPa,60hPa[(p) (A.28)

where 1A is the characteristic function of set A. Let ~y represent a location on the surface of
the Earth and be (~y, r) 7→ τcrow(~y, r) the aerosol optical depth at 550 nm and a certain effective
radius r provided by Th. Crowley, then τ550 = w × τcrow. The time, space and wave length
dependent optical properties of the volcanic aerosols are then given by equations (A.21–A.23).
As in the case of the HAM derived volcanic aerosol properties, the full mixing rules are applied
in the case of the solar radiation according to equations (A.24–A.26). In the case of the thermal
radiation, the simplified equation (A.27) is used. The resulting aerosol optical properties are
shown in fig. A.19. The aerosol optical properties are representative for end of December 1991
and therefore correspond to the aerosols generated by the Pinatubo eruption. The total aerosol
optical depth at 550 nm (top right panel) is very similar to the values given in the table for the
four original latitude bands: 0.1260, 0.1489, 0.1489, 0.1197. The linear interpolation between
these values is also correct. The altitude corresponds to the 20th model level from above. The
single scattering albedo (middle row, left) is one as it is correct for non–absorbing aerosols at
this wavelength. Other quantities like the asymmetry factor of the aerosol optical depth and
single scattering albedo at other wavelengths depend on the effective radius. Since those values
are given for various discrete effective radii, the linear relationship is transformed into a step
function as seen for the assymmetry factor at 550 nm (middle row, right), the total aerosol
optical depth, and single scattering albedo at 11000 nm in the bottom row, respectively.
In fig. A.20, we present the aerosol optical properties of all aerosols. In that case the total
aerosol is composed of the tropospheric aerosol climatology provided by S. Kinne and the long
time record of volcanic aerosols provided by Th. Crowley. The aerosols correspond to end of
December 1991 and therefore show the effect of the Pinatubo eruption. Since the two kinds of
aerosols are spatially rather well separated, the aerosol optical properties in the stratosphere
are similar to the aerosol optical properties of the sole volcanic aerosols. The single scattering
albedo at 550 nm exhibits lower values in the troposphere than in the case of the stratospheric
sulfate aerosols only since dust and black carbon have radiation absorbing properties.

A.10.3 Implementation

Both methods (HAM–derived and Th. Crowley aerosols) defining (volcanic) aerosols are in-
cluded in one module (mo aero volc tab.f90) where the ending “tab” means that the aerosol
optical properties are read from tables. The module mo aero volc tab.f90 contains the fol-
lowing subroutines:

su aero prop {ham,crow}: Initialize and set up memory for HAM derived and Th. Crowley
aerosols. In the case of Th. Crowley aerosols, the normalized altitude profile is defined.
Called from setup radiation (mo radiation.f90).

read aero volc tables: Read tables with wave length and radius dependence of aerosol opti-
cal properties as derived by S. Kinne. In this subroutine, the time independet quantities
ξ, ω and g are read. S. Kinne provided such a table for sulfate aerosols only (until
June 2011). Called from setup radiation (mo radiation.f90).

read aero prop {ham,crow}: Time dependent aerosol optical depths and effective radius ei-
ther derived from HAM or estimated by Th. Crowley are read here. In the case of the



212 APPENDIX A. COMPTES RENDUS

aerosols provided by Th. Crowley, the linear interpolation with respect to latitudes is
performed here. Called from stepon.f90.

add aop volc {ham,crow}: Add the aerosol optical properties to those of the background
aerosols (S. Kinne’s aerosol climatology and Stenchikov aerosols). The naming “volc”
may be misleading in the case of HAM aerosols since these represent stratospheric aerosols
of anthropogenic origin in the framework of hypothetical geoengineering measures and
are added on top of the Stenchikov volcanic aerosols if iaero=6 is chosen (see the usage
section below). The aerosol optical depth at 550 nm and the effective radii are both
interpolated in time, then ξ, ω, and g are determined and the aerosol optical properties
are added according to the mixing rules eq. (A.24–A.27). Called from rrtm interface

(mo radiation.f90).

cleanup aero volc tab {ham,crow}: Free memory and set switches back to default values in
order to allow for a proper internal rerun. Called from control.f90.

A.10.4 Usage

Files to be linked:

aero volc tables.dat has to be linked to e.g. b30w120 containing the time independent values
for ξ, ω, and g as compiled by S. Kinne. This file is needed for both, the HAM and
Th. Crowley aerosols.

aoddz ham yyyy.nc has to be linked to e.g. 8mt t31l39 zm mm aod ham.nc containing monthly
τ550 and effective radius reff data derived from HAM for example. In the file name, yyyy
indicates the year in four digits. Because of the time interpolation, to each simulated year
y the three years y − 1, y, and y + 1 have to be linked.

aodreff crow.dat has to be linked to e.g. ici5d-ad800-1999.asc containing the total optical
depth at 550 nm and the effective radius. There are 36 values per year in these files.

The following choices of the iaero variable of the radctl namelist are possible:

iaero=6: Switches on the use of the background aerosols compiled by S. Kinne, the vol-
canic aerosols by G. Stenchikow, and additional (stratospheric) aerosols derived from
HAM simulations. These aerosols can be of any kind (stratospheric or tropospheric) but
their optical properties must correspond to those on which the calculation of the table
aero volc tables.dat is based. The table contained in b30w120 provided by S. Kinne
is good for sulfate aerosols only (version of February 2011).

iaero=7: Switches on the use of the background aerosols compiled by S. Kinne and the esti-
mate of volcanic aerosols by Th. Crowley as provided in his file ici5d-ad800-1999.asc.
Volcanic aerosols are sulfate aerosols and need the table b30w120 provided by S. Kinne
(version of February 2011) that is good for sulfate aerosols.
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Figure A.17: Aerosol optical properties derived from HAM simulations at 550 nm (top four
panels) and 11000 nm (bottom panels).
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Figure A.18: Aerosol optical properties of the combined tropospheric aerosols (S. Kinne),
volcanic stratospheric aerosols (G. Stenchikov), and the aerosols due to a hypothetical geo-
nengineering experiment with a release of 8 Mt SO2. Total aerosol optical depth at 550 nm
(top left), single scattering albedo at 550 nm (top right), and asymmetry factor at 550 nm
(bottom left), total effective aerosol optical depth at 11000 nm (bottom right).
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Figure A.19: Aerosol optical properties according to Crowley at 550 nm (top four panels)
and 11000 nm (bottom panels) for December 1991. For the aerosol optical depth, we show
the aerosol optical depth in each model layer (top left) and the total aerosol optical depth
(top right). The single scattering albedo and asymmetry factor are shown in the middle row.
At 11000 nm we only show the total aerosol optical depth (bottom left) and single scattering
albedo (bottom right).
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Figure A.20: Aerosol optical properties of the combined tropospheric aerosols (S. Kinne),
volcanic stratospheric aerosols (G. Stenchikov), and the aerosols due to a hypothetical geoengi-
neering experiment with a release of 8 Mt SO2. Total aerosol optical depth at 550 nm (top
left), single scattering albedo at 550 nm (top right), and asymmetry factor at 550 nm (bottom
left), total effective aerosol optical depth at 11000 nm (bottom right).
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A.11 cr2012 08 06: Nudging

A.11.1 Basic equations of the nudging procedure

The general circulation model ECHAM6 calculates the state of the atmosphere starting at certain
initial conditions and integrating over time. The state of the atmosphere may be represented
by a vector ~ξt at a time t ∈ R+ in a certain abstract space S. The state vector moves with time
in S and describes some trajectory. The trajectory t 7→ ~ξt is unambiguously determined by the
initial and boundary conditions, and the model equations. However, even if two initial states
are very close to each other, the trajectories drift apart with time and their mutual distance
becomes larger than any bound provided that we wait long enough. It is therefore impossible
to simulate any real historical trajectory t 7→ ~ζt even if the initial state was set with all care
because of the discretization errors in the model. We cannot even expect that the trajectories
remain close to each other. If it is important for longer simulations to reproduce some real
historical trajectory t 7→ ~ζt at least in its main characteristics, the “nudging” technique can
help to achieve this goal. The idea is to use a relaxation mechanism that approaches the
simulated trajectory t 7→ ~ξt to a given trajectory t 7→ ~ζt.
Let F : S→ S describe the time evolution of ~ξt by the model equations without nudging:

d

dt
~ξt = F (~ξt). (A.29)

We add a relaxation term to this equation that approaches ~ξt to ~ζt. To this end, let κ : S→ S
be a (diagonal) matrix of relaxation coefficients and set:

d

dt
~ξt = F (~ξt)− κ(~ξt − ~ζt) (A.30)

If κ has small values, the “nudging term” κ(~ξt − ~ζt) does not influence d
dt
~ξt, but it dominates

F (~ξt) for large values of κ. Each matrix element of κ can be interpreted as the inverse of
a corresponding relaxation time. Short relaxation times mean a dominant nudging term, at
longer relaxation times, the influence of nudging is reduced.
ECHAM6 provides two possibilities of solving differential equation (A.30): (i) an implicit method
and (ii) an explicit method.

A.11.1.1 Implicit nudging

The discretization of equation (A.30) with respect to time for implicit nudging is the following:

~ξt+∆t − ~ξt
∆t

= F (~ξt+∆t)− κ(~ξt+∆t − ~ζt+∆t) (A.31)

In the above equation, ∆t is the integration time step. Some authors Krishnamurti et al. (1991)
set 2∆t instead because the integration time step is two times longer than the time step in many
time integration schemes.
Equation (A.31) could be solved using a similar procedure as it is implemented for the solution
of equation (A.29) in ECHAM6. The implicit form of discretization of equation (A.29) can be

written as (~ξ∗t+∆t− ~ξt)/∆t = F (~ξ∗t+∆t) describing the integration from a state ~ξt to a state ~ξ∗t+∆t

using the model equation (A.29) without nudging. On the other hand, we may approximate

F (~ξt+∆t) in equation (A.31) by F (~ξ∗t+∆t) and get
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~ξt+∆t − ~ξ∗t+∆t = −∆tκ(~ξt+∆t − ~ζt+∆t)

Solving for ~ξt+∆t yields:

~ξt+∆t = (1 + ∆tκ)−1(~ξ∗t+∆t + ∆tκ~ζt+∆t) (A.32)

or reformulated for any projection ξ, ζ on an arbitrary axis of S representing e.g. temperature
or divergence of the wind field and τ being the corresponding relaxation time (κ diagonal):

ξt+∆t =
τ

τ + ∆t
ξ∗t+∆t +

∆t

τ + ∆t
ζt+∆t. (A.33)

The new ξt+∆t is therefore a linear combination of the prediction ξ∗t+∆t calculated with “free”
ECHAM6 and the nudging data ζt+∆t at that time. For small relaxation times, we get

lim
τ→0

ξt+∆t = ζt+∆t. (A.34)

This means that we simply replace the original prediction by the nudging data. For very large
relaxation times, we get:

lim
τ→∞

ξt+∆t = lim
τ→∞

1

1 + ∆t/τ
ξ∗t+∆t = ξ∗t+∆t. (A.35)

This means that the original prediction of free ECHAM6 is used and the nudging data do not
have any influence on the trajectory t 7→ ~ξt.

A.11.1.2 Explicit nudging

The discretization of equation (A.30) with respect to time for explicit nudging is a bit different
from its implicit form (A.31):

~ξt+∆t − ~ξt
∆t

= F (~ξt)− κ(~ξt − ~ζt) (A.36)

From this follows with (~ξ∗t+∆t − ~ξt)/∆t = F (~ξt):

~ξt+∆t = ~ξ∗t+∆t −∆tκ
(
~ξt − ~ζt

)
For small ∆tκ (small time steps compared to the relaxation times), one may approximate ∆tκ~ξt
by ∆tκ~ξ∗t+∆t leading to

~ξt+∆t = (1−∆tκ)~ξ∗t+∆t + ∆tκ~ζt (A.37)

This means for any projection:

ξt+∆t =

(
1− ∆t

τ

)
ξ∗t+∆t +

∆t

τ
ζt+∆t (A.38)

Very long relaxation times τ lead to the following limit:

lim
τ→∞

ξt+∆t = ξ∗t+∆t (A.39)
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We therefore just accept the original prediction of the time integration and ignore the nudg-
ing data. On the other hand, very short relaxation times show a wrong behaviour of equa-
tion (A.38):

lim
τ→0

ξt+∆t = ξ∗t+∆t +
(
ζt+∆t − ξ∗t+∆t

)
lim
τ→0

∆t

τ
= sgn

(
ζt+∆t − ξ∗t+∆t

)
∞ (A.40)

In general, the nudging equations (A.33) or (A.38) are applied in spectral space to the logarithm
of the surface pressure, the 3–d temperature, and 3–d vorticity and divergence of the wind field.
For each model layer and variable, the relaxation time can be set individually. There is also
a possibility to exclude spectral coefficients of certain order from the nudging procedure. In
general, the nudging mechanism is often used to reproduce large scale dynamic phenomena
as they are present in analysis data but the boundary layer dynamics and local convection
and diffusion processes are intended to be treated by the parameterizations implemented in
ECHAM6. In such cases, the boundary layer and higher order spectral coefficients should be
excluded from nudging. For a more detailed discussion of the choice of relaxation times, see
the article of Jeuken et al. (1996).

In early versions of the nudging procedure, it was possible to nudge the sea surface temperature
also, but this leads to problems due to hysteresis effects as shown in the next section.

A.11.2 Sea ice and nudging

There is a problem with the sea ice coverage when the “nudging procedure” is applied to surface
temperature in ECHAM6. As a consequence of this problem, the sea ice coverage tends to zero in
the Arctic region in summer. This may affect the albedo and consequently the radiation fluxes.

The reason for this low sea ice fraction is the following: The surface temperature of ECHAM6 is
replaced by a prescribed surface temperature from the “nudging fields”. This nudging fields
may originate from the era40 analysis or some “operational” analysis provided by the ECMWF
(European Centre of Medium–Rage Weather Forecasts). In both cases, the surface temperature
is given by the code 139, the variable that is retrieved by the standard method of the preparation
of nudging data sets. The temperature values given by this variable apparently correspond to
the temperature at the soil–air or water–air interface. On sea ice, this temperature can rise
above the freezing temperature of sea water without initiating the melting of sea ice as long as
the temperature is below the melting temperature of freshwater ice because sea ice is essentially
salt–free. Sea water is freezing at about 271.38 K, but the ice is not melting at temperatures
below 273.15 K. Furthermore, the sea ice is a few meters thick and melting takes some time
even at temperatures above 273.15 K. Unfortunately, the nudging procedure does not have any
information about the sea ice coverage from the analysis data but diagnoses sea ice from the
knowledge of the sea surface temperature. In the standard nudging procedure, this diagnosis is
done every 24 hours. The decision criterion for sea ice is a marine surface temperature below or
equal to 271.65 K, thus a bit higher than the freezing temperature of sea water. Nevertheless,
the ice surface temperature easily rises above this threshold in the Arctic region in summer, but
the sea ice is not immediately disappearing in reality. Nevertheless, the sea ice fraction is set
to zero in the model. Consequently, the sea ice coverage is too low with respect to reality. We
demonstrate the problem in Fig. A.21. The difference between the temperature pattern below
271.65 K and the diagnosed sea ice fraction comes from the fact that the sea ice diagnosis is
performed only every 24 hours.
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Figure A.21: Surface temperature as it is provided by the code 139 of the era40 data for the
1st of June 2000, 6:00 a.m. (left), sea ice fraction from nudging (middle), climatological (more
realistic) sea ice fraction (right). All data are interpolated to the resolution T21.

A.11.3 Nudging and usage of sea ice from an external source

In most of the simulations, such low sea ice coverage will be considered to be erroneous and
should be avoided. Only in very special cases, you might consider such a sea ice detection from
the temperature field, e.g. if the latter warrants a temperature that is lower or equal to the
freezing temperature of sea water at all locations covered with sea ice. The best method would
be to eliminate this sea ice detection from the model and to introduce sea ice from AMIP data
sets (or a climatological sea ice field) into the model as a standard. In order to do so, it may
be necessary to modify your ECHAM5 version at two points:

1. In mo nudging sst.f90, set
INTEGER, PUBLIC :: nsstinc = 0

instead of
INTEGER, PUBLIC :: nsstinc = 24

The variable nsstinc is the frequency of setting the sea surface temperature and doing
the ice diagnostic in hours. A value of 0 means no use of the sea surface temperature
provided by the nudging data set.

2. Due to a bug in ECHAM5, you also have to modify the subroutine NudgingInit in
mo nudging init.f90. Replace the line
CALL NudgingSSTClose(.TRUE.)

by
IF (nsstinc > 0) THEN

CALL NudgingSSTClose(.TRUE.)

END IF



A.11. CR2012 08 06: NUDGING 221

Control in any case the resulting sea ice coverage (variable sea ice of the standard output).

A.11.4 Data sets available for nudging

The nudging procedure itself does not rely on data of a certain source. At Max Planck In-
stitute for Meteorology the most commonly used data set is analysis or reanalysis provided
by the ECMWF. But any other data set can be used in principle, even the result of a pre-
vious ECHAM6 run. However, the result of a nudged simulation depends on the choice of the
“nudging data” and is in the responsibility of the user. Concerning data from ECMWF, a
subset of three data sets was interpolated to various resolutions and made available on bliz-
zard.dkrz.de:/pool/data/nudging without any warranty that these data are suitable for the
special needs of a certain simulation experiment: operational analysis, era40 analysis, and era–
interim analysis. The era40 and era–interim analysis (also called re–analysis) are data sets
that were produced using a tree dimensional variational technique based on a unique model
version for the whole period they cover. They include the usage of in situ measurements in
the atmosphere and satellite products. Nevertheless, the era40 data exhibit a discontinuity in
the representation of atmosphere dynamics at the time when satellite data became available.
In particular, the dynamics in the stratosphere is affected. Compared to era–40, era–interim
seems to better represent the dynamics of the atmosphere in many aspects. The operational
analysis is an analysis product that is based on the current forecast model and the resolution
and model parameterization depends on the time period. In addition to analysis data, also
6–hourly forecast data (and forecasts for even larger time intervals) are available. Since the
analysis is most affected by the observational data and therefore the local energy and mass
balance may be violated, the 6–hourly forecast may be less affected by those effects. Yet, it
is unclear whether the use of forecast data will give better results than the use of the analysis
directly. To date, no systematic study is known to the author.

The nudging data are typically available at time intervals of 6 hours. Nudging relaxation times
are long in the middle of these intervals and nudging is more “tight” near the times when
nudging data are available. Furthermore, the “physics” part, i.e. all processes taking place
in a column, are calculated by ECHAM6 itself and are not directly influenced by the external
nudging data. Consequently, the ECHAM6 model is still the main driver of the dynamics that
is just “nudged” to the vicinity of some externally given trajectory represented by the 3d–
temperature, surface pressure, vorticity, and divergence of the wind field. This means that the
simulated trajectory of two different simulations of a sensitivity study will be different even if
nudging is applied. A comparison on a basis of time steps is not possible. In a comparison of
(monthly) mean values, at least the correlation of the dynamic parameters of the two simulations
should be taken into consideration.

A.11.5 New procedure of nudging — data in netcdf format

In the ECHAM6 revisions and versions mentioned on top of this document, both, the old CRAY
format binary nudging data and nudging data in netcdf format can be used. Since 2012/08/01,
nudging data will only be provided in netcdf format on blizzard.dkrz.de:/pool/data/nudging/.
The advantage of netcdf format data is that every user can preprocess the data on any ma-
chine that has the climate data operators (cdo’s) available. Nevertheless, data in the most
common resolutions from era40 and era–interim or other interesting data sets may be provided
on blizzard.dkrz.de:/pool/data/nudging/.
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The nudging files in CRAY binary format can be prepared by “intera” only. This procedure
has several disadvantages: The CRAY binary format depends on machine architecture (little
or big endian), the files are roughly twice as large (128 bit representation) as when numbers
are represented in double precision, the input data files in CRAY format cannot be displayed
by any graphics tool, and the preparation of nudging data with intera is not flexible enough,
e.g. it is difficult to translate spectral echam output into CRAY format using intera. Some of
these problems are solved by the implementation of reading nudging data from netcdf format
files in addition to the reading from CRAY format files. The nudging input files in netcdf
format are machine independent and smaller than CRAY format files, they can be displayd by
graphics tools, and these files can be generated using the cdo library from the original data.
Furthermore, only one nudging input file (per month) is necessary. It contains all spectral
data. Since the nudging of the sea surface temperature leads to erroneous sea ice cover, this
was completely disabled in the netcdf–version of the nudging.
We describe first how to get older ECHAM6 or even ECHAM5 versions ready for reading nudging
data from netcdf format files, then the preprocessing is explained.

A.11.5.1 Implementation of reading nudging data from netcdf format files

The modifications of the ECHAM6 code are limited so that this new feature can be introduced
into older ECHAM6 versions also.
The following files have to be replaced:
src/mo nudging constants.f90, src/mo nudging io.f90, src/mo nudging init.f90,
include/ndgctl.inc

Two variables were added to the nudgctl namelist:

1. ndg file nc for the name template of the netcdf file. As a standard template, the name
ndg%y4%m2.nc is recommended that uses four digits for the year and 2 for the month,
respectively. Monthly nudging files are easy to handle. Data in standard resolution from
standard sources (ECMWF) will be stored at:

blizzard.dkrz.de:/pool/data/nudging

To get access of these files, contact Sebatian Rast (sebastian.rast@zmaw.de).

2. inudgformat that tells ECHAM6 in which format it has to expect the input data.

inudgformat explanation
0 old CRAY binary format (default)
1 GRIB (will not be implemented)
2 netcdf format input files

inudgformat=1 is just mentioned in analogy to out filetype but it will not be imple-
mented since the general agreement is that all ECHAM6 input files should be in either
ASCII or netcdf format.

A.11.5.2 Nudging input file in netcdf format

There is only one nudging input file instead of the old four files in CRAY format (sea surface
temperature will not be nudged but comes from the normal echam SST files). The file contains
the variables reported in Tab. A.15
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Table A.15: Content of nudging file

variable explanation
dimensions

nc2 is equal to 2, dimension for representing complex num-
bers

nsp number of spectral coefficients
lev is equal to 1, serves as a degenerate dimension for the

levels of the logarithm of the surface pressure
lev 2 number of levels of the 3d–variables (is equal to nhym)
nhym number of levels
nhyi number of level interfaces
time UNLIMITED dimension of time steps

variables
lev value: 0. Degenerate level dimension of logarithm of

surface pressure
lev 2 number of model level counted from the top
hyai(nhyi) hybrid A coefficient at level interfaces
hybi(nhyi) hybrid B coefficient at level interfaces
hyam(nhym) hybrid A coefficient at the midpoint of levels
hybm(nhym) hybrid B coefficient at the midpoint of levels
time(time) date and time in proleptic Gregorian calender: yyyym-

mdd.ff, where yyyy is the year, mm the month, dd the
day and ff the fraction of the corresponding day.

lsp(time,lev,nsp,nc2) real and imaginary part of the spectral coefficients of the
logarithm of the surface pressure

t(time,lev 2,nsp,nc2) real and imaginary part of the spectral coefficients of the
temperature (levels counted from the top)

svo(time,lev 2,nsp,nc2) as of temperature but spectral coefficients of wind field
vorticity

sd(time,lev 2,nsp,nc2) as of temperature but spectral coefficients of wind field
divergence

A.11.5.3 Old interpolation of nudging data using intera

Originally, the interpolation and transformation of nudging data into CRAY format was per-
formed by the use of intera. The program intera provides a number of different options
that will affect the outcome of the interpolation. In the interpolation of nudging data, intera
is used with the command line options -hum and +cse. This implies that intera does the
vertical interpolation for a moist atmosphere (option -hum, input nudging data include specific
humidity), and uses a special correction of land surface temperature based on the conservation
of dry static energy (option +cse). By default, intera also does the vertical interpolation on
the high resolution grid of the input files (option -csi high is default). See http://wekuw.met

.fu-berlin.de/~IngoKirchner/nudging/nudging/ for the intera manual.
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A.11.5.4 Interpolation of nudging data using cdo commands

Interpolation of input data with the climate data operators instead of intera has the advantage
of easy portability. The cdo’s are installed on most of the computer systems climate scientists
use whereas intera is less available. There are various options for the interpolation and this
implementation of interpolation intends to get results that are as close as possible to the results
of the intera program.
This section describes the scripts to generate spectral nudging data for ECHAM6 from ECMWF
analysis data. We assume that the ECMWF analysis data come in the two files ∗.gp and
∗.sp. We demonstrate the interpolation for the case that ECMWF data are in T106 horizontal
resolution and a target grid of T63L47. The file ∗.gp contains the specific humidity (code 133)
on a reduced Gaussian grid (N80) that corresponds to spectral truncation T106. The file ∗.sp
contains the spectral representation in truncation T106 of

• the geopotential (code 129),

• the logarithm of surface pressure (code 152),

• atmospheric temperature (code 130),

• relative vorticity (code 138),

• divergence (code 155).

The surface geopotential (orography multiplied by Earth gravitational acceleration, g) of the
target resolution T63L47 must be provided in a template file; the A and B coefficients of the
vertical levels of this target resolution must also be present in the template file.
The master script nudging cdo.sh calls nudging int cdo.sh. The last one calls
nudging int month cdo.sh which is finally calling int cdo.sh. This complicated code struc-
ture is due to the fact that the scripts sort out for each month which is the first and last year
to be interpolated for this particular month. The interpolation of all different months are then
started in parallel beginning with the respective lowest year. The script int cdo.sh generates
a run script for each month and year which may be called by a nohup command or sent to the
queue of the respective computer.
All paths to the scripts or data can be set in the master script nudging cdo.sh:

SCRIPTPATH: Path to the scripts ∗ cdo.sh used for the interpolation.

DATAPOOL: Path to the original nudging data that have to be interpolated. The scripts expect
tar–files <tag>yyyymm.tar in $DATAPOOL/<tag> where <tag> is the tag of the files de-
scribing the data set (e.g. era40), yyyy is the year in four digits, and mm is the month in
two digits. The tarfiles must contain a directory <tag>yyyymm which hosts the aforemen-
tioned two files <tag>yyyymm.{gp,sp}. Furthermore, $DATAPOOL/templates must con-
tain the above described template files template.echamTxxLyy where TxxLyy describes
the resolution, e.g. template.echamT63L47.

WORKPATH: Path to a directory where the original and interpolated data will be stored in
<tag>yyyymm.

The script nudging cdo.sh will be called with the following arguments:

nudging_cdo.sh <tag > TxxLyy yyyy1 mm1 yyyy2 mm2
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Table A.16: Maximum absolute differences (integrated over the whole atmosphere and time
period of one month) between the fields generated by cdo and intera. Input is January 2003
of the ECMWF analysis in N80/T255L60 resolution, output resolution is T31L39.

variable maximum absolute difference
logarithm of surface pressure 0.007

(surface pressure difference of 0.7%)
surface geopotential 13.3 m2s−2

temperature 0.6 K
u-wind 0.58 ms−1

v-wind 0.35 ms−1

where <tag> is the descriptor tag of the data, TxxLyy is the target resolution, yyyy1 and mm1

the first year and month, and yyyy2 and mm2 the last year and month for which interpolation
is required. Example:

nudging_cdo.sh era40 T63L47 1960 01 1969 12

A detailed description of the cdo commands can be found in cr2011 11 04 (sebas-
tian.rast@zmaw.de).

A.11.5.5 Quality check of the cdo implementation

To check the quality of the above procedure, we compared the result of the cdo implementation
to the result produced by intera using ECMWF analysis data for January 2003. The analysis
data is in resolution N80/T106 with 60 vertical levels, the ECHAM spectral nudging data
in resolution T31L39. The maximum absolute differences (over the whole atmosphere and
time period of one month) between the fields generated by cdo and the intera are listed in
Table A.16.

A.11.6 Nudging input namelist

See the echam6 user guide.

A.11.7 Output of nudging

There is an extra output file called <exp name> <date> nudg[.nc]. This file contains some
information about the nudging process. We present a list of the standard output variables in
Table A.17.

The “nudging” input data, so the analysis data towards which the ECHAM6 trajectory is relaxed,
are interpolated with respect to time. Therefore, the actual interpolated observational data are
written to the nudging output file. Note that there is a mistake in the units written to the file.
Instead, the units in Table A.17 apply.

There are also variables describing the change in surface pressure, temperature, divergence and
vorticity due to the nudging process. Let ξ be one of these variables, then

∆ξ(t+∆t) :=
ξt+∆t − ξ∗t+∆t

∆t
(A.41)
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is the so–called nudging tendency. In this equation, ξ∗t+∆t is the prediction of ξ for time t+ ∆t
as it is produced by the model without taking the nudging into account.
When we combine equation (A.41) with equation (A.33) we obtain for the nudging tendency
in the case of implicit nudging:

∆ξ(t+∆t) =
ζt+∆t − ξ∗t+∆t

τ + ∆t
(A.42)

The nudging tendency is therefore proportional to the difference between the the nudging
data and the corresponding model prediction. The sum τ + ∆t in the denominator makes
equation(A.42) well behaved in the sense that for large τ the nudging tendency is close to zero
(there is no correction of the model predictions by the nudging procedure) and ξt+∆t = ζt+∆t for
small τ . In the latter case, nudging is very “tight”. This is consistent with the limits discussed
in section A.11.1.1.
Combining equations (A.41) and (A.43) for the explicit nudging leads to

∆ξ(t+∆t) =
ζt+∆t − ξ∗t+∆t

τ
(A.43)

In this case, we obtain ξt+∆t = ξ∗t+∆t in the case of large τ . But if we reduce τ keeping ∆t
constant at the same time, the difference between ξt+∆t and the pure model prediction ξ∗t+∆t

tends to ±∞. Again, equation (A.43) is consistent with the limits discussed in section A.11.1.2
and shows the wrong limiting behaviour of this formula for small τ once more. Furthermore, we
can see from equation (A.43) that the explicit nudging only works well if τ is large compared
to the integration time step ∆t. This is what we expect since the nudging algorithm just solves
equation (A.30) numerically.

Table A.17: Output file nudg. The type of the output fields is s (spectral space variable). If the
respective variable is averaged over the ouput interval, this is indicated by s. The dimension
is either 2d (variable depends on longitudes and latitudes only) or 3d (variable depends on
longitudes, latitudes, and levels).

Name Code Type Unit Dimension Stream Explanation
NADIV 117 s 1/s2 3d nudg time average of nudging ten-

dency ∆D(t) over ouput in-
terval for divergence of wind
field

NAPSFC 115 s 1/s 2d nudg time average of nudging ten-
dency ∆ ln p

(t)
surf over output

interval for the logarithm of
the quotient of surface pres-
sure divided by 1 Pa

NATEMP 116 s K/s 3d nudg time average of nudging ten-
dency ∆T (t) over outoput
interval for temperature

NAVOR 118 s 1/s2 3d nudg time average of nudging ten-
dency ∆ξ(t) over output in-
terval for vorticity of the
wind field

table continued on next page
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Table A.17: Output file nudg — continued

NIDIV 113 s 1/s2 3d nudg nudging tendency ∆D(t) at
time t (instantaneous value)
for divergence of wind field

NIPSFC 111 s 1/s 2d nudg nudging tendency ∆p
(t)
surf at

time t (instantaneous value)
for the logarithm of the quo-
tient of surface pressure di-
vided by 1 Pa

NITEMP 112 s K/s 3d nudg nudging tendency ∆T (t) at
time t (instantaneous value)
for temperature

NIVOR 114 s 1/s2 3d nudg nudging tendency ∆ξ(t) at
time t (instantaneous value)
for vorticity of the wind
field

ODIV 33 s K 3d nudg divergence of the wind field
of nudging data set interpo-
lated to the output date

OPSFC 31 s — 2d nudg logarithm of the quotient
of surface pressure divided
by 1Pa of nudging data set
interpolated to the output
date

OTEMP 32 s K 3d nudg temperature of nudging
data set interpolated to the
output date

OVOR 34 s K 3d nudg vorticity of the wind field
of nudging data set interpo-
lated to the output date

A.11.8 Open issues

• In T63L95 resolution, the trunction step cdo sp2sp,t63grid causes problems with all
variables being present in one input file. So, the file is split up first.

• cdo remapeta gives warning “Output humidity at level 52 out of range (min=-3.63232e-21
max=0.0181785)!”

• Can cdo’s transform surface fields like surface temperature similar to intera using box–
averaging?
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A.12 cr2012 10 30: Single column model

ECHAM6 is a general circulation model that simulates the transport of air masses, energy, and
trace gases like water vapour inside these air masses by advection, convection, and small scale
turbulence (eddies) represented by diffusion equations. Furthermore, all relevant physics like
radiation, cloud and precipitation formation, and surface processes are included. In some
cases, it is difficult to separate local effects from large scale dynamics, e.g. the direct influence
of radiation on cloud formation may be obscured by advection of energy from neighbouring
columns. In these cases, the analysis of physics processes in one single isolated column of
the model can shed light on the mutual relationships of these processes. The analysis of the
behaviour of model physics in one column can help us to develop new parameterisations and
is the natural test bed for physics parameterisations. Furthermore, a single column may be
considered as a very primitive model of the atmosphere of the earth represented by the processes
in one single “average” column. It may be instructive to investigate extreme scenarios like a
very hot climate and the behaviour of the physics implemented in ECHAM6 under such conditions
in a “single column version” of ECHAM6.

A.12.1 Initial conditions and forcing data for the single column
model

Similar to a general circulation model, the single column model needs initial conditions as
starting point of time integration. Furthermore, it is possible to relax the trajectory of certain
variables towards a given trajectory of these variables or to prescribe tendencies for certain
variables. All input data i.e. initial conditions and externally prescribed trajectory and tendency
data are read from one single “forcing” file the name of which can be set in the columnctl

namelist file.
The geographical location of the column on the globe is given by its geographical longitude
and latitude described by the variables lon, lat in the forcing file. The single column model
reads the longitude and latitude from this file, they cannot be set in the namelist. Since the
single column model applies the 2d land sea mask and surface properties to the geographical
location of the column, the surface properties are implicitly determined by the longitude and
latitude of the column. Furthermore, all geographically dependent quantities like the diurnal
cycle, solar irradiation, greenhouse gas or aerosol mixing ratios, and sea surface temperature are
automatically calculated for this special geographical location or extracted from the respective
ECHAM6 input files.
Examples for forcing files can be found in /pool/data/ECHAM6/SCM.

A.12.1.1 Initial condition variables, trajectory variables, and tendency variables
in the forcing file

The forcing file contains the variables listed in the first column of Tab. A.18 describing at the
same time the initial state and a trajectory of that state. The first time step of these variables
is used as the initial state. The first column gives the names under which the variables appear
in the forcing file. Furthermore, the corresponding tendencies of these variables may also
be present. The names of the corresponding tendencies are listed in the second column of
Tab. A.18. All variables depend on the dimensions time [and levels] (time[,nlev]).
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Table A.18: Variables describing the initial state, its trajectory, and tendencies in the forcing
file. As initial conditions, the first time step of the variables listed in the first column of the
table are used. The dimensions of each variable are reported in the third column of the table.
The mode in the last column of the table is marked “essential” if the variable must be present
as initial condition or optional if the variable can be set to zero at the initial state.

variable tendency dimension explanation mode
t ddt t (time,lev) temperature in the column essential
u ddt u (time,lev) wind in ~u direction essential
v ddt v (time,lev) wind in ~v direction essential
q ddt q (time,lev) specific humidity essential
ps — (time) surface pressure essential
xl ddt ql (time,lev) liquid water content optional
xi ddt qi (time,lev) ice water content optional

As mentioned above, it is possible to relax the state variables listed in Tab. A.18 towards some
given trajectory. The relaxation is performed in the following way: Let X

(f)
t be the value of a

quantity X at time t to which the original prediction Xt of this quantity for time t has to be
relaxed. Let τ > 0 be a relaxation time and ∆t > 0 the integration time step. Then, the new
prediction X̃t at time t is given by:

X̃t :=

{
Xt + (X

(f)
t −Xt)

∆t
τ

for τ > ∆t

X
(f)
t for τ ≤ ∆t

(A.44)

In addition to the application of a trajectory until it ends, the same given trajectory may be
repetitively applied (“cycled”), e.g. a diurnal cycle may be applied over and over again. The
prescribed trajectory can be given at any regular time intervals and is interpolated to the actual
model time steps.

When one applies the relaxation method to certain variables, the trajectory of the respective
variables will be restricted to a neighbourhood of the given trajectory. There is a second method
to influence the trajectory: Instead of the internally produced tendencies (internal tendencies)
resulting from the physics processes in the respective column, tendencies originating from 3d
large scale dynamics (external tendencies) may be used or added to the internally produced
tendency. In general, if any external tendencies are provided, the single column model simply
replaces the internal tendencies by the external tendencies with one exeption: If vertical pressure
velocity or divergence is prescribed from an external data set (see Sec.A.12.1.2), the external
tendencies of t, u, v, q, ql, qi are added to the internal tendencies. Tendencies can be used
for all variables of Tab. A.18 except for the surface pressure. Since the mass of dry air in the
column is considered to be constant in time, the surface pressure can not change.

The various forcing options described above for the variables of Tab. A.18 are coded in an
“option” array of three integer numbers {i∆, τ, icycle}. To each variable such an option array is
assigned. The first element i∆ is equal to 0 if no external tendencies are used for the respective
variable, i.e. the variable is only changed due to physics processes in the column. If i∆ = 1,
the external tendencies are applied according to the rule above. The second element τ of the
option array is the relaxation time in seconds. The third element icycle has to be set to 1 if
cycling of the external trajectory is desired, it has to be set to 0 if the trajectory is not cycled.
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A.12.1.2 Forcing by prescribing values of certain variables

Up to now, we described how to influence the trajectory of the state variables listed in Tab. A.18.
Furthermore, there is a set of variables the values of which can or can not be externally pre-
scribed. These variables are listed in Tab. A.19.

Table A.19: Boundary condition variables

variable dimension explanation
ts (time) surface temperature
div (time,lev) divergence of the wind field
omega (time,lev) vertical pressure velocity

For the variables listed in Tab. A.19 the “option” array consists of two elements {iset, icycle}.
If the first element iset = 0, the variable is allowed to change freely, whereas iset = 1 means
that the corresponding variable is set to the value given by the external data set. The second
element icycle determines whether (icycle = 1) or not (icycle = 0) cyclic interpolation with respect
to time of the external data set is required.

A.12.2 Namelist columnctl

Table A.20: Namelist columnctl

variable type explanation default
forcingfile(32) character name of the forcing file —
mld real depth of mixed layer in me-

tres
10

ml input logical ml input=.true.: initial
temperature of mixed layer
ocean is set to the value
of the surface tempera-
ture of the forcing file.
ml input=.false.: the sea
surface temperature is set
to the value given in the
ECHAM6 sst file for the re-
spective column

.false.

nfor div(2) integer option array describing the
treatment of the divergence
of the wind field. The
option array consists of
{iset, icycle} as described in
section A.12.1.

(/0,0/)

table continued on next page
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Table A.20: columnctl — continued

nfor lhf(2) integer option array describing the
treatment of the latent heat
flux. The option array con-
sists of {iset, icycle} as de-
scribed in section A.12.1.
This option array is not
working.

(/0,0/)

nfor omega(2) integer option array describing the
treatment of the pressure
pressure velocity. The
option array consists of
{iset, icycle} as described in
section A.12.1.

(/0,0/)

nfor q(3) integer option array describing the
treatment of the specific
humidity in the column.
The option array consists of
{i∆, τ, icycle} as described in
section A.12.1.

(/0,0,0/)

nfor shf(2) integer option array describing the
treatment of the sensible
heat flux. The option ar-
ray consists of {iset, icycle} as
described in section A.12.1.
This option array is not
working.

(/0,0/)

nfor t(3) integer option array describing
the treatment of the col-
umn temperature. The
option array consists of
{i∆, τ, icycle} as described in
section A.12.1.

(/0,0,0/)

nfor ts(2) integer option array describing
the treatment of the sur-
face temperature. The
option array consists of
{iset, icycle} as described in
section A.12.1.

(/0,0/)

nfor uv(3) integer option array describing the
treatment of the wind in
~u and ~v direction. The
option array consists of
{i∆, τ, icycle} as described in
section A.12.1. The ~u and
~v winds can not be treated
individually.

(/0,0,0/)

table continued on next page
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Table A.20: columnctl — continued

nfor uvgeo(2) integer option array describing
the treatment of the
geostrophic wind. The
option array consists of
{iset, icycle} as described in
section A.12.1.

(/0,0/)

nfor xi(3) integer option array describing the
treatment of the ice water
content. The option array
consists of {i∆, τ, icycle} as
described in section A.12.1.

(/0,0,0/)

nfor xl(3) integer option array describing
the treatment of the liq-
uid water content. The
option array consists of
{i∆, τ, icycle} as described in
section A.12.1.

(/0,0,0/)

A.13 cr2013 09 13: CFMIP2 high frequency output at

selected stations

A.13.1 CFMIP2 high frequency output at selected stations

In the framework of CMIP5 (Coupled Model Intercomparison Project Phase 5), 124 sites on the
globe were identified for which high frequency output of meteorological data at these geograph-
ical locations is required. The list of these sites can be found in the file pointlocations.txt.
The output variables comprise surface and column quantities. ECHAM6 provides a module that
can write those variables into single files for each CFMIP2 site (Cloud Feedback Model In-
tercomparison Project). The module opens a separate file for each site at the beginning of a
run and only closes it at the end resulting in a (long) time series in one file that may contain
several months or even years irrespective of the name of the file. No restart files are written, the
restart values of accumulated variables are taken from their original counterparts of ECHAM6.
The disk space needed for the storage of 1 year of half–hourly output of the total of 120 stations
is 23.5 GB.
The current design of the module mo station diag.f90 leads to several problems in ECHAM6:

(i) Some of the variables are present in spectral space in ECHAM6. They are transformed to
grid point space at certain places in the code but do not necessarily contain the time–
filtered (Asselin time filter) values corresponding to the actual time step at that stage.

(ii) The tendencies will only be written if the tendency diagnostic is also switched on, the
radiation fluxes and convective mass flux will be written only if the cfdiag flux diagnostic
is switched on.

(iii) Most variable names in the CFMIP2–site output are compliant with the CMOR standard,
but maybe not all. In particular, the tendencies have their original ECHAM6 names and
no CMOR names may exist for them. There was a postprocessing script making the
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output CMOR compatible. This script is unknown to the author of this documentation.
In addition to changing names, unit conversions or other calculations may be performed
by this script, some of these may not be necessary anymore. In particular, the winds ua

and va are multiplied by the cosine of the latitude at some places in ECHAM6 and were
written as such to date. This has been corrected so that the true ua and va values are now
written to the output. It is unknown whether the former postprocessing script corrected
the winds by the cosine factor.

(iv) In the current version, all “accumulated” variables seem to have wrong values. E.g. the
evaporation at station 118 has values around 8 × 10−7kg/(m2s) when extracted from
the global ECHAM6 output but negative values around −3 × 10−8kg/(m2s) and −7 ×
10−8kg/(m2s) in the first time steps of the standard ECHAM6 tests. Vertically integrated
cloud ice has values around 1.5 × 10−5 when extracted from global fields but values of
the order of −1 × 10−6 in the station file that is clearly impossible since they should be
non-negative.

(v) Each site is written into a separate file. It maybe more suitable to introduce a station
index dimension and write the data of all sites into one single file per processor. One
could introduce variables that contain all the names and geographic locations of each of
the sites. This may reduce the number of files but still keep the parallelization to have
each processor writing the stations located at the particular processor.

(vi) There is no selection of stations possible meaning that the output of the total of the
124 stations is mandatory if the CFMIP2 station diagnostic is switched on. In a future
version, one should be more flexible and read the stations from a file. There is no need
to have an “equally spaced” station index in the output file, i.e. each station can have
a fixed index (number) and a file could contain the stations 3, 80, 97 only, for example.
They just have to be ordered according to increasing indices.

The output of the variables at the CFMIP2 sites can be enabled by the use of the following
namelist:

Table A.21: Namelist stationctl

variable type explanation default
lostation logical logical that switches on

(lostation=.true. or off
(lostation=.false.) the out-
put of certain ECHAM6 vari-
ables at a collection of sites.
At these sites, profiles are
also written to the output.

.false.

A.13.2 CFMIP2–sites output files

The output for each CFMIP2 site is written to a separate file
${EXPNAME} yyyymm.dd cfSitesnnnn.nc where yyyy is the year, mm the month, and
dd the day when the respective output file was opened. The number nnnn corresponds to the
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official site number ranging from 0001 to 0120 as it is given by the updated CFMIP2 site list,
see e.g.
http://cfmip.metoffice.com/cfmip2/pointlocations.txt. The output variables contain
either surface values of the model grid box that contains the corresponding station representing
an average over the gridbox ground surface or values “of this grid box” representing a kind
of an average over the whole grid box. This type of variables will be marked by 1ds in the
surface case or 1d for the grid box average. For some variables, the values of the column above
the gridbox of the site are given. The values are written to the file at the “midlevel pressures”.
These variables are marked to be 2d in terms of their dimension.
Each of the CFMIP2 files contains the following output variables if the tendency and flux
diagnostics are switched on:

Table A.22: Output file for each of the CFMIP2 sites. Instantaneous variables are of type g,
variables averaged over time are of type g. Surface variables are marked by 1ds, variables of
which the average of the grid box is given are marked as 1d, column variables are marked as
2d in the “dimension” column. The entry in the “stream” column gives information about
the internal ECHAM6 stream from which the corresponding variable was collected. The original
name of this variable is given in parenthesis.

Name Type Unit Dimension Stream Explanation
aclcov g – 1ds g3b (aclcov) total cloud cover
aprl g kg/(m2s) 1ds g3b (aprl) large scale pre-

cipitation
cct g Pa 1d g3b (topmax) pressure of al-

titude level of
convective cloud
tops

cl g – 2d g3b (aclc) cloud cover
cli g – 2d gl (xi) fractional cloud

ice
clivi g kg/m2 1ds g3b (xivi) vertically in-

tegrated cloud
ice

clw g – 2d gl (xl) fractional cloud
water

clwvi g kg/m2 1ds g3b (xlvi) vertically in-
tegrated cloud
water

dqdt cloud g 1/day 2d tdiag (dqdt cloud) tendency of spe-
cific humidity
due to cloud
scheme

dqdt cucall g 1/day 2d tdiag (dqdt cucall) tendency of
specific hu-
midity due to
convection

table continued on next page
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Table A.22: CFMIP2 output — continued

dqdt vdiff g 1/day 2d tdiag (dqdt vdiff) tendency of spe-
cific humidity
due to vertical
diffusion

dtdt cucall g K/day 2d tdiag (dtdt cucall) tendency of tem-
perature due to
convection

dtdt cloud g K/day 2d tdiag (dtdt cloud) tendency of tem-
perature due to
cloud scheme

dtdt hines g K/day 2d tdiag (dtdt hines) tendency of
temperature
due to gravity
waves (Hines
parametriza-
tion)

dtdt rheat lw g K/day 2d tdiag (dtdt rheat lw) tendency of
temperature
due to radiative
heating (ther-
mal wavelength
bands)

dtdt rheat sw g K/day 2d tdiag (dtdt rheat sw) tendency of
temperature
due to radiative
heating (so-
lar wavelength
bands)

dtdt sso g K/day 2d tdiag (dtdt sso) tendency of tem-
perature due to
orographic grav-
ity waves

dtdt vdiff g K/day 2d tdiag (dtdt vdiff) tendency of tem-
perature due to
vertical diffusion

evspsbl g kg/(m2s) 1ds g3b (evap) evaporation
from the surface

geosp g m2/s2 1ds g3b (geosp) surface geopo-
tential (orogra-
phy)

hur g – 2d g3b (relhum) relative humid-
ity

hus g – 2d gl (q) specific humid-
ity

mc g kg/(m2s) 2d cfdiag (imc) net upward con-
vective mass flux

table continued on next page
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Table A.22: CFMIP2 output — continued

mhfls g W/m2 1ds g3b (ahfl) latent heat flux
mhfss g W/m2 1ds g3b (ahfs) sensible heat

flux
mrlus g W/m2 1ds g3b (tradsu) upward thermal

radiation energy
flux at surface

mrlut g W/m2 1d g3b (trad0) net thermal
radiation energy
flux at top of
atmosphere

mrlutcs g W/m2 1d g3b (traf0) net thermal
radiation energy
flux at top of
atmosphere
for clear sky
conditions

mrsus g W/m2 1ds g3b (sradsu) upward solar
radiation energy
flux at surface

mrsut g W/m2 1d g3b (srad0u) upward solar
radiation energy
flux at top of
atmosphere

prc g kg/(m2s) 1ds g3b (aprc) convective pre-
cipitation

prsn g kg/(m2s) 1ds g3b (aprs) snow fall
prw g kg/m2 1ds g3b (qvi) vertically in-

tegrated water
vapour

ps g Pa 1ds g3b (aps) surface pressure
rld g W/m2 2d cfdiag (irld) downward en-

ergy flux of
radiation in-
tegrated over
thermal wave-
length bands

rldcs g W/m2 2d cfdiag (irldcs) downward en-
ergy flux of
radiation in-
tegrated over
thermal wave-
length bands
under clear sky
conditions

table continued on next page
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Table A.22: CFMIP2 output — continued

rlu g W/m2 2d cfdiag (irlu) upward energy
flux of radia-
tion integrated
over thermal
wavelength
bands

rlucs g W/m2 2d cfdiag (irlucs) upward energy
flux of radiation
integrated over
thermal wave-
length bands
under clear sky
conditions

rsd g W/m2 2d cfdiag (irsd) downward en-
ergy flux of
radiation in-
tegrated over
solar wavelength
bands

rsdcs g W/m2 2d cfdiag (irsdcs) downward en-
ergy flux of
radiation in-
tegrated over
solar wave-
length bands
under clear sky
conditions

rsdt g W/m2 1d g3b (srad0d) incoming solar
radiation energy
flux at top of
atmosphere

rsu g W/m2 2d cfdiag (irsu) upward energy
flux of radiation
integrated over
solar wavelength
bands

rsucs g W/m2 2d cfdiag (irsucs) upward energy
flux of radia-
tion integrated
over solar wave-
length bands
under clear sky
conditions

sfcWind g m/s 1d g3b (wind10) 10 meter wind
table continued on next page
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Table A.22: CFMIP2 output — continued

slm g – 1ds g3b (slm) land sea mask
(1=land,
0=sea/lake)

srads g W/m2 1ds g3b (srads) net solar radia-
tion energy flux
at surface

srafs g W/m2 1ds g3b (srafs) net solar ra-
diation energy
flux at surface
for clear sky
conditions

sraf0 g W/m2 1d g3b (sraf0) net solar radia-
tion energy flux
at top of atmo-
sphere for clear
sky conditions

ta g K 2d g1a (tm1) temperature at
time step t −
∆t (not time fil-
tered?)

tas g K 1d g3b (temp2) temperature 2m
above the sur-
face

tauu g m/s 1d g3b (ustr) zonal wind stress
tauv g m/s 1d g3b (vstr) meridional wind

stress
trads g W/m2 1ds g3b (trads) net thermal

radiation energy
flux at surface

trafs g W/m2 1ds g3b (trafs) net thermal
radiation energy
flux at surface
for clear sky
conditions

ts g K 1ds g3b (tsurf) surface tempera-
ture

table continued on next page
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Table A.22: CFMIP2 output — continued

ua g m/s 2d g2a (um1) zonal wind ve-
locity at time
step t − ∆t
(not time fil-
tered?); caution:
this variable is
multiplied by
the cosine of
the latitudes at
some points in
ECHAM6, but not
here

uas g m/s 1d g3b (u10) zonal wind ve-
locity 10m above
the surface

va g m/s 2d g2a (vm1) meridional wind
velocity at time
step t − ∆t
(not time fil-
tered?); caution:
this variable is
multiplied by
the cosine of
the latitudes at
some points in
ECHAM6, but not
here

vas g m/s 1d g3b (v10) meridional
wind velocity
10m above the
surface

wap g Pa/s 2d – vertical velocity
ω

zg g m2/s2 2d – geopotential
over ground

A.13.3 Implementation

The module mo station diag.f90 contains all relevant subprograms station diag,
save last, station write, station diag nml, init station diag, cleanup station diag,
init svars, init pointers, collect station diag, station find, open station file,
write lon lat, close station file, accu info, unit info, put unit, p gather real 1d2d.

There is a central switch lostation for the station diagnostic. The idea is to create a data
structure of type station type that contains for each station the information about the ge-
ographic location, the name of the station, information about the associated output file, a
logical that indicates whether the particular station is on the actual processor or not, and the
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respective grid–box indices on that processor. Furthermore, there is a data structure for surface
(var type2d) and column (var type3d) variables. The 1–d arrays v2d and v3d have elements
of this type for each surface and column variable, respectively. These data types contain a
pointer to the actual 2d–array for the surface variables and to the actual 3d–array for the col-
umn variables from which the corresponding geographic location has to be extracted. In order
to do this, the indices of the latitude–longitude box describing this geographical location on
each processor must be known. This information is contained in the array st with elements of
the above mentioned data type station type that contains np and nr as the grid box indices
on the processor at which the station is located. The indices np and nr are determined by the
subroutine station find in such a way that the quadratic distance (in radiant) of the mid
point of the gridbox and the station location is minimized. The subroutine station find also
reads the location of each site from the file pointlocations.txt.
The connection to ECHAM6 is done in the following way:

initialize.f90: calls station diag nml reading the stationctl namelist.

control.f90: calls init station diag and cleanup station diag. The subroutine
init station diag sets the attributes of the output variables (init vars), connects
the pointers of v2d and v3d to the 2d– and 3d–arrays of ECHAM6, and sets the indices
np and nr of the respective gridbox for each station (station find). It also opens the
station file open station file and writes the coordinates in terms of longitude and lat-
itude into the respective station files (write lon lat). The value of the previous time
step is saved (save last) for the accumulated variables. Since the values are copied
from the original ECHAM6 variables that should have been stored in the restart files, this
should assure the restart property of the station diagnostic. However, the values of all
accumulated variables are wrong in the first time step after a restart.

physc.f90: calls collect station diag. This subroutine stores the geopotential height as it
is calculated in physc.f90.

scan1.f90: calls station diag. This subroutine writes the date and all the diagnostic vari-
ables as they are at this stage in ECHAM6 to the output file. It calls station write to
write the variables into the file.

A.13.4 Results

Here is a small comparison of the result of the station diagnostic and the values obtained by
the extraction of the respective gridbox from the standard ECHAM6 output files. We choose
station 118 at 110.0◦E and 88.0◦N (Central Arctic Ocean Point) because the winds may there
potentially suffer most from the multiplication with the cosine of the latitude. The u–wind
and temperature profiles presented in fig. A.22 show that the values extracted from the global
output and the values obtained by the station diagnostic are fairly similar but not equal. The
reason for the differences is the time filter that is only partially applied to the station values
but should be further investigated.
The values of accumulated values extracted from the global file and the station file differ a lot
and are not meaningful as they are in the station files. This problem was already mentioned in
subsection A.13.1.
Other variables agree very well like the 2–metre temperature at various time steps:
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Figure A.22: Temperature (left) and u–wind (right) profile at site 118 extracted from global
output (red) and the station file (green).
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temp. from global file/K 244.4435 244.6073 244.7841
temp. from station file/K 244.4436 244.6077 244.7842
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A.14 cr2014 05 09 rjs: Age–of–air submodel

A.14.1 The age of air

This section is cited from reference (Bunzel, 2013) with very few modifications.

Using the tracer interface of the ECHAM6 general circulation model we implemented an ap-
proach to derive the mean age of a stratospheric air parcel as well as its associated age spec-
trum. Following the work of Hall and Plumb (1994), passive tracers were injected during a
model simulation, which are merely transported by the winds and which are neither involved
in any chemical reaction nor interacting with radiation.

In order to obtain the mean age of an air parcel, a tracer with linearly increasing concentrations
is injected into the lowermost model level at every grid point between -5 and +5 degrees latitude.
The tracer species is then transported by the winds on various Brewer–Dobson circulation
pathways with different transit times, before it is recirculated. After an initialisation time of
about 20 years, to a good approximation all possible transit times for air parcels are covered,
and the tracer circulation can be considered to be in a steady state.

If the mixing ratio of a conserved tracer, n = n(P, t), is prescribed at the injection point P0,
and n(P0, t) = 0 for t < 0, then the tracer mixing ratio at some other point P can be derived
by

n(P, t) =

∫ t

0

n(P0, t− t′)G(P, P0, t
′)dt′, (A.45)

where the Green’s function G(P, P0, t
′) represents the distribution of transit times from P0 to

P , i.e. the age spectrum (Hall and Plumb, 1994). The mean age Γ of an air parcel can then be
defined as the average of the component transit times:

Γ(P, P0) =

∫ ∞
0

t ·G(P, P0, t)dt. (A.46)

Using a linearly increasing passive tracer, all information on single air parcels is lost, which
is due to irreversible mixing processes. The age spectrum G(P, P0, t

′) is unknown. If one
would neglect the mixing of air parcels in the stratosphere, the Green’s function would become
Dirac’s delta distribution, G(P, P0, t

′) = δ(t − t0), where t0 would represent the transit time
of an air parcel from point P0 to some other point P (Hall and Plumb, 1994). Inserting this
special Green’s function into Equation (A.46) a measure of the age of air, Γ, in the absence
of mixing processes is obtained by the lag time t0 that a tracer concentration at point P0 is
also attained at point P . Hall and Plumb (1994) showed that in the more general case, when
stratospheric mixing processes are considered and, thus, the age spectrum of an air parcel has a
finite width, this result also holds in the long-time limit for a linearly increasing passive tracer.
Figure A.23 shows that the age of a stratospheric air parcel can be derived in this way from the
ECHAM6 GCM. It depicts the zonal-mean concentration of a passive tracer at one grid point
in the high-latitude lower stratosphere and the prescribed tracer concentration at the surface.
A systematic time lag in tracer concentrations is apparent, which is modulated by an annual
cycle originating from the annual cycle in the residual circulation. After an initialisation time
of 20 years the time lag in the annual-mean tracer concentration between any grid point in the
stratosphere and the prescribed tracer concentrations at the surface turns out to be constant
to a good approximation. Thus, after 20 simulated years with a passive tracer initialised, all
following years of the simulation can be used to derive the mean age of air.
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Figure A.23: The concentration of a passive tracer over time is shown at two different levels
at ≈ 69◦N in a model simulation performed with an early version of the ECHAM6 GCM under
stationary present-day boundary conditions. The time lag between the concentrations can be
used to derive the transport time of an air parcel from one grid point to the other and, thus,
the age of air.
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Figure A.24: The mean transit time of an air parcel originating from the tropical tropopause,
i.e. the mean age of air, is shown. As in Manzini and Feichter (1999), the reference grid box is
the 110 hPa level at the equator. The data represents the mean over the 50-year present-day
time-slice simulation performed with the ECHAM6 GCM using 95 levels.

Although the passive tracer is usually initialised at the surface, the tropical tropopause is
commonly used as the reference point for the age of a stratospheric air parcel. As tracers are
distributed rapidly within the troposphere, the reference point can simply be set to a certain
location close to the tropical tropopause by subtracting the tracer concentration at the reference
grid point from any grid point above. Following Manzini and Feichter (1999) we use the 110 hPa
level at the equator as the reference grid point to calculate the age of air. The zonal-mean age
of air, obtained from all grid points above this reference level in the 50-year present-day time-
slice simulation with ECHAM6, is shown in Figure A.24. The depicted age of air distribution
reflects the transport of air parcels along the residual circulation trajectories in a coherent way.

Following Hall and Plumb (1994) we derive the age spectrum of an air parcel from a simulation
of the spatio–temporal distribution of a tracer that was injected into the atmosphere in a
pulse. For a single time step the mixing ratio of a passive tracer is set to 1 at every grid
point between -5 and +5 degrees latitude in the lowermost model level. Before and after this
time step the mixing ratio is forced to zero at the same grid points. In this way the tracer
concentration in the injection grid points is as close as possible to Dirac’s delta distribution.
Consequently, n(P0, t − t′) can be substituted by δ(t − t0) in Equation (A.45) approximately,
leading to G(P, P0, t − t0) = n(P, t). This shows that the age spectrum G(P, P0, t − t0) at
any grid point P is given by the tracer concentration in that grid point. A certain amount of
this tracer pulse escapes the injection grid points between the injection and the following time
step. In order to normalise the age spectrum it is divided by the total abundance of the tracer
species left in the model at the time step, at which the age spectrum is read out. To account
for seasonal differences in transport, one tracer pulse is injected on January 1 and another one
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Figure A.25: The age spectrum of an air parcel located at 30 hPa and 75◦N is shown. The data
was derived from the 50-year present-day time-slice simulation performed with the ECHAM6
GCM using 95 levels.

on July 1. Every 12 years tracer concentrations are being reset, and a new pulse is injected.
By building the mean age spectrum of several tracer pulses, effects originating from possible
special atmospheric states can be reduced. Figure A.25 shows the zonal-mean age spectrum of
an air parcel at one grid point in the high-latitude lower stratosphere in the 50-year present-day
time-slice simulation with ECHAM6, calculated by using the method described above. The age
spectrum peaks at roughly 2.5 years, while the long tail of the spectrum reflects recirculated air
parcels with an age of up to the maximum age of 12 years (as tracer concentrations are being
reset after 12 years, see above).

A.14.2 Implementation

The age–of–air submodel consists of three passive tracers, one for the mean age of air mean age,
and two that are used to calculate the age spectra for winter and summer (spec winter,
spec summer).

init aoa: The age of air submodel consists of the subprograms init aoa, bcond aoa,
get pointer2trac, tracer reset, and tf reset that are all collected in the module
mo aoa.f90.
The subroutine init aoa reads the namelist aoactl from the file namelist.echam, cre-
ates the tracers mean age, spec winter, and spec summer, and sets the 2–dimensional
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emission mask emissions mask to 1.0 for each grid box where the tracers are emitted, to
0 where no emission takes place. Furthermore, the index of the model level at which the
emissions are injected into the atmosphere is determined.

bcond aoa: Adds the emission rate to the tracer tendencies of mean age, spec winter, and
spec summer, respectively. The emission rates are added only where emission mask is
larger than zero and only if the model time lies in the appropriate time interval. In the
case of age–of–air tracers, the emission region is small compared to the globe and a where–
statement may be faster than a multiplication of the emission rate by emission mask.

get pointer2trac: This subroutine provides pointers to the 3–dimensional fields hosting the
mass mixing ratios of the tracers mean age, spec winter, and spec summer at time step
t and t−∆t, respectively.

tracer reset, tf reset: The winter and summer tracer spec winter and spec summer have
to be reset to zero after certain time intervals given by the namelist in order to have
good statistics in the determination of the age spectrum. The program allows for a
maximum number of four re–initializations of these tracers. The variables xt, xtm1, and
pxtte are reset in tracer reset, the variable xtf is reset in the tr reset. The latter
variable occurs in the time filter and has to be reset also in order to achive a complete
re–initialization of the tracer.

A.14.3 Usage

A.14.3.1 Namelist

The age–of–air tracers controlled by the namelist aoactl. It contains the following variables:

Table A.23: Namelist aoactl

Variable Type Explanation Default
conc increase double prec. increase of mean age tracer in

mass mixing ration per day. The
mass mixing ratio in the region
where emission mask > 0 is
conc increase× t after time t.

1.0e-6 dp

dt start emi summer 1 integer(6) year, month, day, hour, minute,
second of first time that the emis-
sion of the tracer spec summer

starts. The emission lasts one
time step only. The date should
be in summer.

1978,1,2,0,0,0

table continued on next page
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Table A.23: aoactl — continued

dt start emi summer 2 integer(6) year, month, day, hour, minute,
second of second time that
the emission of the tracer
spec summer starts. The emis-
sion lasts one time step only.
The date should be in sum-
mer and about 12 years after
dt start emi summer 1.

1990,1,2,0,0,0

dt start emi summer 3 integer(6) year, month, day, hour, minute,
second of third time that
the emission of the tracer
spec summer starts. The emis-
sion lasts one time step only.
The date should be in sum-
mer and about 12 years after
dt start emi summer 2.

2002,1,2,0,0,0

dt start emi summer 4 integer(6) year, month, day, hour, minute,
second of second time that
the emission of the tracer
spec summer starts. The emis-
sion lasts one time step only.
The date should be in sum-
mer and about 12 years after
dt start emi summer 3.

2014,1,2,0,0,0

dt start emi winter 1 integer(6) year, month, day, hour, minute,
second of first time that the emis-
sion of the tracer spec winter

starts. The emission lasts one
time step only. The date should
be in winter.

1978,1,2,0,0,0

dt start emi winter 2 integer(6) year, month, day, hour, minute,
second of second time that
the emission of the tracer
spec winter starts. The emis-
sion lasts one time step only.
The date should be in win-
ter and about 12 years after
dt start emi winter 1.

1990,1,2,0,0,0

dt start emi winter 3 integer(6) year, month, day, hour, minute,
second of third time that
the emission of the tracer
spec winter starts. The emis-
sion lasts one time step only.
The date should be in win-
ter and about 12 years after
dt start emi winter 2.

2002,1,2,0,0,0

table continued on next page
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Table A.23: aoactl — continued

dt start emi winter 4 integer(6) year, month, day, hour, minute,
second of second time that
the emission of the tracer
spec winter starts. The emis-
sion lasts one time step only.
The date should be in win-
ter and about 12 years after
dt start emi winter 3.

2014,1,2,0,0,0

emission lat n double prec. latitude of the northern boundary
of the emission region in degrees
north

5◦

emission lat s double prec. latitude of the southern boundary
of the emission region in degrees
north

−5◦

emission plev double prec. Pressure level of emission in hPa.
More precisely, the emission is
injected in the model level with
the lowest pressure at the mid-
point of which the pressure at
the lower boundary is larger than
emission plev. The pressure
of the model levels are deter-
mined using a surface pressure of
101325 Pa.

1013.25 hPa

A.14.3.2 Postprocessing

There are two ncl–scripts provided at
https://svn.zmaw.de/svn/diagnostics/trunk/diagnostics/echam/

that create graphical output of the age of air calculated from the tracer output of the age–of–air
submodel. The contour age.ncl script creates a contour plot with the mean age of air from
the mean age tracer, aoa spectrum.ncl calculates the age spectrum of air at a certain model
level and latitude.

A.14.3.2.1 contour age.ncl: This script requires yearly files with monthly means, but it
can calculate the zonal mean by itself. There are lines at the beginning of the ncl–script that
have to be adjusted to the actual experiment.

Table A.24: Variables of contour age.ncl

Variable Explanation

table continued on next page
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Table A.24: contour age — continued

cdo cmd cdo–command that will be executed before the
mean age is calculated, e.g. ‘‘zonmean’’ for the
calculation of zonal mean values, or ‘‘zonmean

-monmean’’ to calculate monthly means and zonal
means.

climean period of time over which the monthly means are
averaged, e.g. “YEAR”, “DJF”, or “JJA”.

datdir path of input files
dstring Plot title
expm infix of input files describing the experiment, e.g.

‘‘DEV0107’’

emission start start year of emissions
first year first year from which the global tracer increase can

be considered to be linear.
fname suffix suffix of ECHAM6 input files. In most cases either

‘‘tracer’’ or ‘‘tracerm’’
last year last year that will be used in the age–of–air calcu-

lation
lat idx n index of northern latitude up to which the age of

air is calculated. It has to be counted from the
equator. E.g. 46 in the case of a horizontal reso-
lution T63.

lat idx s index of southern latitude up to which the age of
air is calculated. It has to be counted from the
equator, E.g. 47 in the case of a horizontal resolu-
tion T63.

proj will be a part of the ourput filename, e.g.
‘‘SHARP’’

reflevel pressure in hPa at which the age of air is defined
to be zero. Usually, relevel=11000, i.e. the age
of air is assumed to be zero at 110 hPa.

wks type format of graphics output, e.g. ‘‘eps’’

A.14.3.2.2 aoa spectrum.ncl: This script requires yearly files with monthly means of the
pulsed tracers spec winter and spec summer. There are lines at the beginning of the ncl–script
that have to be adjusted to the actual experiment.

Table A.25: Variables of aoa spectrum.ncl

Variable Explanation
datdir path of input files

table continued on next page
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Table A.25: aoa spectrum — continued

cdo cmd cdo–command that will be executed before the
mean age is calculated, e.g. ‘‘zonmean’’ for the
calculation of zonal mean values, or ‘‘zonmean

-monmean’’ to calculate monthly means and zonal
means.

emission years time interval between emission pulses in years
expm infix of input files describing the experiment, e.g.

‘‘DEV0107’’

first emissions year of first emission pulse
fname suffix suffix of ECHAM6 input files. In most cases either

‘‘tracer’’ or ‘‘tracerm’’
latidx index of latitude at which age spectrum is to be

calculated
levidx index of level at which age spectrum is to be cal-

culated
no of trac total number of emission pulses
proj will be a part of the ourput filename, e.g.

‘‘SHARP’’

wks type format of graphics output, e.g. ‘‘eps’’
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A.15 cr2014 07 14 rjs: Simulation of radiative–

convective equilibrium using ECHAM6

A.15.1 Introduction

The radiative–convective equilibrium (RCE) offers a possibility to improve our fundamental
understanding of processes in the atmosphere and their impact on climate change (e.g. Manabe
and Strickler (1964)). The idea behind this simplified modeling of the atmosphere is that the
basic atmospheric structure, especially in the tropics, is determined by the balance between
cooling of the atmosphere through radiative processes and a commensurate heating through
convection, mainly by the net release of latent heat through precipitation.
The RCE has been investigated in models of different complexity, ranging from simple energy
balance, 1–dimensional column models to high resolution LES simulations. The RCE is also
implemented into the general circulation model ECHAM6 by creating a model configuration, where
the resulting climate is given merely through the balance of radiative processes and convection.
Columns can interact with each other and thus create a mean three–dimensional circulation
which develops interactively, although it is very different from the general circulation we know
from the real Earth. E.g., the RCE results in slowly moving convective clusters of sometimes
continental extension (Popke et al. (2013)).
To inhibit net energy transport from the tropics to the poles, homogeneous boundary conditions
are specified, where every gridpoint of the sphere receives the same incoming solar radiation
(e.g. 340 W/m2). A diurnal cycle may be switched on but is kept exactly the same for each
column representing a pulsating light source shining from all directions equally. The Earth’s
rotation velocity is set to zero. In the standard RCE configuration, land–sea contrasts are
removed by specifiying an underlying mixed–layer ocean with a constant ocean albedo, but can
easily be included in idealized form for land–sea contrast studies (Becker and Stevens (2014)).
Besides the modifications mentioned above and technical details listed below, the results of the
ECHAM–RCE well resemble the tropics of a control simulation with the full ECHAM6 model
in the mean state Popke et al. (2013). However, this model version has not been tested for
possible equilibria dependence on the initial boundary conditions yet, nor for complete isotropy
of variables expected from the homogeneous boundary conditions.

A.15.2 Namelist settings for radiative–convective equilibrium

The simulation of the radiative–convective equilibrium needs some special namelist settings in
order to switch off the diurnal cycle for example. Table A.26 gives an overview of the necessary
settings.

Table A.26: Namelist setting for radiative–convective equilibrium simulations with ECHAM6

Variable Explanation default
runctl namelist

earth angular velocity = 0.0 switch off Coriolis force: no rota-
tion

7.29212e-5

table continued on next page
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Table A.26: RCE namelist — continued

lrce = .true. turn on radiative–convective
equilibrium mode:
same zenith angle at all grid
points with either a perpetual
day or (ldiur = .true.) a diurnal
cycle that is equal for all grid
points (the irradiation is dimmed
and brightened independently of
the geographic position).
use constant ocean surface albedo
(0.07)
ignore dynamical planetary
boundary layer height in plane-
tary boundary layer calculation.

.false.

ly360 = .true. use a 360 days calendar (this is
not a prerequisite for an RCE
simulation)

.false.

l orbvsop87 = .false. use PCMDI (AMIP) orbit that
does not change with time and
corresponds to a Kepler orbit.

.true.

radctl namelist
cecc = 0.0 eccentricity of Kepler orbit is set

to zero meaning that the orbit is
circular

0.016715

cobld = 0.0 obliquity in degrees is set to zero 23.441

iaero = 0 simulate an aerosol free atmo-
sphere

2

isolrad = 4 or 5 solar irradiation
isolrad = 4: solar irradiation for
RCE including a diurnal cycle. In
this case, ldiur must be set to
.true.

isolrad = 5: time constant solar
irradiation for RCE. In this case,
ldiur must be set to .false.

3

icfc = 0 switch off all effects of chlorofluo-
rocarbons

2

A.15.3 Initial and boundary conditions

The initial and boundary conditions are different from the usual model set–up since they are
isotropic except for the initial conditions into which a small perturbation of the isotropy is
introduced.

The initial and boundary conditions can be generated in various resolutions from initial and
boundary condition files that exist already. The script create initial files rce aqua.sh is
provided at /pool/data/ECHAM6/input/r0004/rce/bin. In order to change the resolution, you
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have to modify the values of the variables RES, ILEV, OCERES according to the desired spectral
resolution, vertical levels, and ocean resolution, respectively. In that case, initial and boundary
condition files of standard ECHAM6 have to exist in the new resolution RES, ILEV, OCERES in
/pool/data/ECHAM6/input/r0001. The following tables A.27–A.29 give an overview of the
values of the variables modified for radiative–convective equilibrium simulations with ECHAM6.

Table A.27: Spectral initial data in {RES}{LEV} jan spec rce.nc for radiative–convective
equilibrium simulations

Variable Description
SVO = 10−81/s vorticity of the wind field, is transformed to spectral space in

the file
SD = 10−81/s divergence of the wind field, is transformed to spectral space

in the file
STP = (300K, 11.5261) temperature is set to 300K at all model levels globally and

the logarithm of the surface pressure ln(psurf/(1Pa)). Both
are transformed to spectral space in the file and stored in the
variable STP, the pressure is stored in the “level” nlev + 1.

Q = 10−8 specific humidity stored in grid point space.

The vorticity and divergence of the wind field are set to a small value in order to initiate
dynamics in the atmosphere. Finally, this leads to spatial inhomogeneities and triggers regional
dynamics.
The surface variables collected in {RES}{OCR} jan surf rce.nc are mostly set to zero with
only a few exceptions. Table A.28 lists the respective variables.

Table A.28: Surface (initial) data in {RES}{OCR} jan surf rce.nc for radiative–convective
equilibrium simulations

Variable Description
SLM = 0 land–sea mask set to zero to indicate that there is

ocean everywhere
GEOSP = 0m2/s2 The surface geopotential is set to zero (no moun-

tains)
WS = 0m soil wetness
SN = 0m snow depth
SLF = 0 fractional land–sea mask
AZ0 = 0.001m surface roughness
ALB = 0.07 surface background albedo
FOREST = 0 vegetation type
WSMX = 10−13m field capacity of soil
FAO = 0 FAO data set
GLAC = 0 glacier mask
ALAKE = 0 lake mask
OROMEA = 0m2/s2 mean orography
OROSTD = 0m2/s2 standard deviation of orography

table continued on next page
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Table A.28: Surface initial data for RCE — continued

OROSIG = 0◦ orographic slope
OROGAM = 0◦ orographic anisotropy
OROTHE = 0◦ orographic angle
OROPIC = 0m elevation of orographic peaks
OROVAL = 0m elevation of orographic valleys

The following files listed in Table A.29 contain variables related to boundary conditions at the
surface:

Table A.29: Surface boundary condition data for radiative–convective equilibrium simulations

Variable Description
{RES} amip2sst rce.nc sst = 300K sea surface tempera-

ture
{RES} amip2sic rce.nc sic = 0% sea ice coverage
{RES} qflux rce.nc aflux = 0 heat flux in the ocean

for simulations includ-
ing mixed–layer ocean

As ozone profile, an equatorial column from an ozone file from the AC&C/SPARC ozone data
base for CMIP5 for the year 1870 is taken and stored in {RES} ozone CMIP5 rce.nc.
For all other land–surface files, the usual ECHAM6–files can be linked since they do not have any
influence on the results as long as the planet has a pure ocean surface.
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